@inesc id | J LISBOA | by

Persistent hardware
transactions can scale

Joao Barreto

(and Daniel Castro, Alexandro Baldassin, Paolo Romano)

The transactional memory abstraction

* Great for concurrency control

* One of the most popular abstraction for “failure-atomic critical
sections” in PM literature

TX_BEGIN(pool) {
TX ADD_DIRECT (& RW(F00));
TX_ADD_DIRECT(&D RW(BAR));
D RW(F00) = D RO(F00)-100;
D RW(BAR) = D RO(BAR)+100;
} TX_END

A persistent memory transaction with PMDK

AN U1 W W DN =

Transactional Memory:

Hardware transactional memory (HTM) =&

Digital Equipment Corporation Dept. of Computer Science
Cambridge Research Laboratory University of Massachusetts
Cambridge MA 02139 Amherst, MA 01003
herlihy@crl.dec.com moss@cs.umass.edu
Abstract structures avoid common problems associated with con-
i i tems:

A shared data structure is lock-free if ts operations do not
require mutual exclusion. If one process is interrupted in
the middle of an operation, other processes will not be

Hardware level Herlihy and Moss, 1993
Conflict Detection

-
[)
Core Core Core Core Xbegln ’
L]
Private Private Private Private

Cache Cache Cache Cache foo -_— foo — 1 0 0 ;
A=1,B=2, C=3 bar = bar + 100 y
Shared Memory
_xend;

« Priority inversion occurs when a lower-priority pro-
cass is preempted while holding a lock nceded by

IBM Bowi _Scale-Out Servers Launch kel Intel’ Xeon® CPU Armv9: Foundation for Total Compute Solutions
i 4 - WERQ J L/I7UX, A/X//BM /, SAP HANA XeON Max Series Premium performance and efficiency for next-generation devicek& a

First Armv9 generation,
high efficiency “LITTLE” CPU

v o i) 3x

Latest flagship CPU
. for ultimate performance
Backbone to
0
Total Compute S +16% 2X
CPU solution > First Armv9 “big” CPU per

scalability balanced for Bt s
performance and efficiency

uplift ML upift

. +10% 4 62X

After the multi-core revolution...
.. the persistent memory (PM) revolution

E : : :A = - NS PR—— ‘ g .‘
ot (SR '.*wﬁg B] | S X
.i = .d EbE ——
i -‘ " E-;‘ mi‘m‘u}:{ ' f} _. .o . e TP
ffA = Baze mpute
E<press
| Link
HTM provides opacity hardware transactions can

access persistent objects

However, HTM doesn’t guarantee durable opacity

How to help HTM support
persistent hardware
transactions?

Why not just using write-ahead logging?

* Writes to PM also added to a durable redo log (in PM)

* However, we cannot flush redo log entries to PM before the HTM
commits the transaction

Begin HW transaction
W(X,1)

Log(X) clflush
| Abort ‘

>

time

Externalization of cache-lines while the
transactions is running causes it to abort!

Durable hardware transactions
based on a shadow copy

in volatile RAM

i Replayed via a
“LEsies s background process

Working
Snapshot

Transaction

We decouple transaction isolation (via HTM) from durability (via WAL)

Challenge: Persistence order must be consistent with happens-before order

But does it scale?...

with NV-HTM [pops1g]

T, starts T, starts T, starts
Tx. exec. Tx. exec. Tx. exec.
TS=100 1S=105 TS=110
logs logs logs
wait prev.
Tx. wait prev.
flush commit Tx.

wait prev.
Tx.

marker

T, returns flush commit
marker

T, returns flush commit
marker

time
M T, returns

with SPHT [rFast21;
T, starts
T, starts Tx. exec.
TS=105
Tx. exec.
TS=115 flush T, detects that
To will flush the
flush oz °
. global marker
logs wait prev.
wait prev. TX.
Tx.
CAS wait global
flush global T2 EI
marker

Toreturns T, returns

time
v

STAMP

VACATION LOW

Throughput (x1000 TXs/s)
o S0]000 1500 8000 2500

Threads

SPHT-NL
SPHT-FL
SPHT-BL
NV-HTM
DudeTM
cc-HTM
Crafty
PSTM

What about read-only
transactions?

Scalability issue #1

TS=11 TS=19

--------- @) Durability wait |- - -)

durTS=9 durTS=NA)
ﬁ ----------------------
durTS=7 durTS=15 durTS=NA)
durTS=13 durTS=17 durTS=NA)
durTS=9 durTS=24

Legend:

Executing in HTM

htmBegin htmCommi £ Flushing redo logs/

commit marker to PM

Scalability issue #2

 Hardware transactions have a (very) limited read set capacity
* When a transaction exceeds its capacity, the HTM abort it

* Typically, the transaction must acquire a single global lock to
execute

Making read-only transactions scale
with DUMBO

* Scalability issue #1:
Read-only transactions practically never
need to wait for writer transactions to persist

* Scalability issue #2:
Read-only transactions run HTM-free
(without read instrumentation), so have
unlimited reads and never abort

| application |

Durable Unlimited-reads Memory transactions on Best-effOrt HTM (DUMBO)

Update transactions
BeginTX() —

<«

htmBegin(...)

Execute
transaction

CommitTX() —>
: htmCommit

Ensure tx is durable
(e.g. using SPHT)

D — return

. BeginTx() :
Consstency{ Tw W(X.A) CommitTx()

. . . _________________________
violation htmBegin htmCommit >

Read-only transactions

BeginTX(RO) > State([tid] = activeRO
<«

Execute

transaction

CommitTX() —> - -
E State[tid] = inactiveRO

Update transactions
BeginTX() —

htmBegin(...)
<—

Execute

transaction
CommitTX() —>

*
L]

Wait until
State[i] == inactiveRO
for every other thread

htmCommit

-
**

Ensure tx is durable
(e.g. using SPHT)

isolation
wait

-1BM POWERS -

Existing
HTMs

HTM can suspend
access tracking?

ARM TME

no

Intel TSX

loads

PowerHTM

loads or tull

Scale-Out Servers Launch intl Intel° Xeon® CPU

- Linux, AX/BM.i-SAP HANA XeoN Max Series

Armv9: Foundation for Total Compute Solutions

Premium performance and efficiency for next-generation deviceb®

a¥

e
<
S A
(>

gship CPU
an

Read-only transactions

BeginTX(RO) >

State][tid] = activeRO

<«

Execute
transaction

CommitTX() —>

State[tid] = inactiveRO

—

Not ready yet.

We need to fix the "The persistence bug”
(see Erez Petrank’s previous talk)

BeginTX()

Update transactions

<

CommitTX()

&

4
[]

htmBegin(...)

Execute
transaction
htmSusTrack

Wait until
State]i] == inactiveRO
for every other thread

htmResTrack
htmCommit

Ensure tx is durable
(e.g. using SPHT)

*
ll“

isolation
wait

Read-only transactions Update transactions

_ BeginTX() —>
BedinTX(RO) > siatetid] = activeRO htmBegin (. . .)

<— <—
Execute Execute

transaction transaction
CommitTX() — htmSusTrack

*
L]

CommitTX() —>

State[tid] = inactiveRO

*
ans®

. : - Wait until :
Wait :) I i
. : i |State[i] == inactiveRO| i isolation

VNG ERIEN : durability o @ Gilher e wait

concurrent : wait
update txs durable

: htmResTrack
htmCommit

Ensure tx is durable
(e.g. using SPHT)

Revisiting the durability wait of read-only txs

Any concurrent writer will HTM-commit after R.

Therefore, R no longer needs to wait for them!

TS=11 TS=19
R o—ell) Durability wait |- - -)
W durTS=9 durTS=NA
1 ﬁ ----------------------)
Y; durTS=7 ' durts=1s durTS=NA 77
-- @) 2 >
W3 ‘I durTS=13 durTS=17 durTS=NA
________ = — - - ._-_____)
Y; durTS=9, durTS=24
4 ----- -—)
|

— O O oy o S N oy o D o, g s S oy, L L o e D D e o o e R g, L, e

Update transactions
BeginTX() —>

—
Execute Execute

transaction transaction

Read-only transactions

BeginTX(R
eginTX(RO) > State[tid] = activeRO
<

htmBegin(...)

itTX CommitTX() —>
Comml; ()?State tid] = inactiveRO), 1 R o i *,
i Wait until previous RTINS : Wait until P
3l update txs durable [JHEEERNEN: : i |State[i] == inactiveRO| : 'SO\:\?;?”
: |for every other thread

htmResTrack
htmCommit

Ensure tx is durable
(e.g. using SPHT)

Evaluation

* |IBM POWER9

* OS-assisted suspend/resume (HTM issues a trap) => high
suspend/resume latency

* DUMBO, SPHT [rasr21, HTM, Pisces (S| STM) [arc’19]

* TPC-C benchmark with an even mix of operations:

* “Stock level” and “Order status” (large read-only transactions) (s

 "Payment” (small writer transactions)

* “Delivery”, “New order” (large writer transactions) Oregon State
University

Machine provided by
OSU Open Source Lab

Results

Throughput (T/s)

[-s, -d, -0, -p, -r] = (20, 20, 20, 20, 20)

14000 - DUMBO-read
—— SPHT
12000 { —#— HTM
Pisces
10000 A
8000 A
+
,.__ ————— 4
6000 A —o
4000 A
2000 A
O 1 1 1 1 1 1 1
0 5 10 15 20 25 30

Nb. Threads

Summary

* We can have persistent hardware transactions with
HTM+”software glue”, however scalability is a huge challenge

e SPHT [rFasT211accelerates writer transactions with a new commit
logic that mitigates scalability bottlenecks of previous alternatives

* DUMBO [wip] boosts read-only transactions by granting them
unlimited reads and a reduced durability wait

* Suspend/resume tracking supportin HTM is useful, even if
through expensive OS-assisted mechanisms

Jodo Barreto | joao.barreto@tecnico.ulisboa.pt | https://www.dpss.inesc-id.pt/~jpbarreto/

More DUMBO (not in this talk)

* On IBM POWERDY, we can also suspend load+store tracking

* This also enables DUMBO to:
* Hide redo log flush latency
* Generlize unlimited reads to writer transactions
* Improve durability&log replay logic

