

Persistent hardware transactions can scale

João Barreto

(and Daniel Castro, Alexandro Baldassin, Paolo Romano)

The transactional memory abstraction

- Great for concurrency control
- One of the most popular abstraction for "failure-atomic critical sections" in PM literature

```
1 TX_BEGIN(pool) {
2    TX_ADD_DIRECT(&D_RW(F00));
3    TX_ADD_DIRECT(&D_RW(BAR));
4    D_RW(F00) = D_RO(F00)-100;
5    D_RW(BAR) = D_RO(BAR)+100;
6 } TX_END
```

A persistent memory transaction with PMDK

Hardware transactional memory (HTM)

Herlihy and Moss, 1993

```
Core Core Private Cache Private Cache Cach
```

```
_xbegin;
foo = foo - 100;
bar = bar + 100;
_xend;
```


After the multi-core revolution...

... the persistent memory (PM) revolution

HTM provides opacity

hardware transactions can access persistent objects

However, HTM doesn't guarantee durable opacity

How to help HTM support persistent hardware transactions?

Why not just using write-ahead logging?

- Writes to PM also added to a durable redo log (in PM)
- However, we cannot flush redo log entries to PM before the HTM commits the transaction

Durable hardware transactions based on a shadow copy

We decouple transaction isolation (via HTM) from durability (via WAL)

Challenge: Persistence order must be consistent with happens-before order

But does it scale?...

with NV-HTM [IPDPS'18]

with SPHT [FAST'21]

STAMP

What about read-only transactions?

Scalability issue #1

Scalability issue #2

- Hardware transactions have a (very) limited read set capacity
- When a transaction exceeds its capacity, the HTM abort it
- Typically, the transaction must acquire a single global lock to execute

Making read-only transactions scale with DUMBO

- Scalability issue #1:
 Read-only transactions practically never
 need to wait for writer transactions to persist
- Scalability issue #2:
 Read-only transactions run HTM-free
 (without read instrumentation), so have unlimited reads and never abort

Read-only transactions

Existing	HTM can suspend
HTMs	access tracking?
ARM TME	no
Intel TSX	loads
PowerHTM	loads or full

CommitTX() -> State[tid] = inactiveRO

Not ready yet.
We need to fix the "The persistence bug"
(see Erez Petrank's previous talk)

Revisiting the durability wait of read-only txs

Evaluation

- IBM POWER9
- OS-assisted suspend/resume (HTM issues a trap) => high suspend/resume latency
- DUMBO, SPHT [FAST'21], HTM, Pisces (SI STM) [ATC'19]
- TPC-C benchmark with an even mix of operations:
 - "Stock level" and "Order status" (large read-only transactions)
 - "Payment" (small writer transactions)
 - "Delivery", "New order" (large writer transactions)

Results

Summary

- We can have persistent hardware transactions with HTM+"software glue", however scalability is a huge challenge
- **SPHT** [FAST'21] accelerates writer transactions with a new commit logic that mitigates scalability bottlenecks of previous alternatives
- **DUMBO** [wip] boosts read-only transactions by granting them unlimited reads and a reduced durability wait
- Suspend/resume tracking support in HTM is useful, even if through expensive OS-assisted mechanisms

More DUMBO (not in this talk)

- On IBM POWER9, we can also suspend load+store tracking
- This also enables DUMBO to:
 - Hide redo log flush latency
 - Generlize unlimited reads to writer transactions
 - Improve durability&log replay logic