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Why Processing-in-Memory
* Data movement is often the dominant cost.

* Processing-in-memory
(a.k.a., near-data-processing)

enables compute to be pushed to memory.

=> Saves data movement.
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Why Processing-in-Memory now

* |dea back to 1970

Memory dies
Abstract

* New 3D die-stacked memory load/store interface
cubes \

Timing-specific
DRAM
interface

* Low-latency, high-bandwidth
local memory access

PIM &
DRAM controller
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Foundations of PIM (?)

Amount of recent (2010-2020) PIM research on:
« Systems / architecture / technology side? 100+ papers

* Theory / algorithms side? ~3 papers (as of 2020)



Generic PIM System

* Host CPU side:
* Parallel cores with shared cache

* PIM side:

* Many PIM modules, each with a core
& a memory

* All communication between

components go through the network.
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The Processing-in-Memory Model

* CPU side:

* Parallel cores with shared cache
of size M <« n words

* PIM side:

e P PIM modules, each with a core
& a memory of size O(n/P) words

e All communication between

components go through the network.

[Kang, Gibbons, Blelloch, Dhulipala, Gu, McGuffey, SPAA'21]
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Computationally, what is distinctive about PIM?

e Strawman 1: Treat entirely as a

shared-memory model

* Emulate shared memory on PIM modules,
using hashing

* But would make all memory accesses non-local!

e Strawman 2: Treat entirely as a

distributed-memory model
* |gnore the available shared memory

* But would lose the potential benefits (we show)
of using the shared memory
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Distributed Memory with a powerful Shared Memory front-end

(Bulk-synchronous offload of compute)



Pushing Compute to Memory

Inherent tension between

* Minimizing communication
* Achieving load balance

* (Without replication causing a blow up in space and/or update costs)



Example: Range Partitioned Index

Prior Work

Get: 7 8 9 10

0|6 |7 25 CPU

9 P\ L |\ W\ 20 V
IM PIM
Module 2 Module 3

Bottleneck: Fully serializes the batch of Get operations

PIM

Module 1

Module 4

Overcoming bottleneck: Need smart mix of randomization & replication



Our Approach: PIM-Tree (simplified view)
Assuming 4 PIM modules (P = 4)

Replicated upper part with O(n/P) nodes

‘=) SEh 480 Gan

Randomly distributed lower part of height log(P)

[Kang, Zhao, Blelloch, Dhulipala, Gu, McGuffey, Gibbons

Batch-parallel execution of adversarial batches
VLDB’23 Best Paper Runner-up] " P



But Load Imbalance Persists

Predecessor Search

Get: 8 10 12 14

L] 7 5 7




Key Insight: Push-Pull Search

Independently for each PIM module:
CPU side dynamically decides whether to

* push queries to the PIM-tree node or
* pull the node’s keys back to the CPU

...based on which moves less data
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Host CPU is great for hot spots over limited memory: So use it!
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Results Against Prior PIM-based Indexes

Up to 59X improvement !

PIM-Tree

[ Partitioned Skip List

Improvements of PIM-Tree
over Partitioned Skip List

Pred() Throughput on Zipf workloads on UPMEM

Plus: Good Asymptotic Bounds on all Metrics



< (0.3X Communication !

Results Against CPU-based Indexes

* Bars are throughputs; '+ are communications
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Other Completed and Ongoing Results

PIM-trie: PIM-optimized radix tree [Kang, Zhao, Blelloch, Dhulipala, Gu, McGuffey, Gibbons, SPAA’23]

PIM optimized spatial index (zd-tree)

Designing entire PIM-optimized DBMS (skew-resistant)

Host CPU is beneficial due to
its asymmetrically-high bandwidth
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Future: PIM-equipped CXL

Number of DIMMm
Slots!
Access memory Compute Here

devices via I/0

e.g., CXL-enabled FPGA J
Scalable capacity

J Increased potential
bandwidth

-=-hardware node distances:
7891011 fnode 0 1
e 0: 10 20 CXL
1: 20 10
CXL MemOW No good programming
model (yet)!

1 -based memory pooling systems for cloud platforms e =

Slide from Samuel Thomas’ EMERALD presentation on CXL, with “Compute Here” added



oundations of PIM: Project Team

Hongbo Kang i

The Processing-in-Memory Model
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UPMEM’s PIM System

PIM chip DRAM Processing Unit (DPU)
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PIM-enabled Memory DRAM Memory
Svstem DIMM Number of Ranks/ DPUs/  Total DPU Total Number of Total
Codename DIMMs DIMM DIMM DPUs Frequency Memory DIMMs Memory
2,556-DPU System P21 20 2 128 E,.EEEII:'1 350 MHz 159.75 GB 4 256 GB
CPU
System CPU CPU Sockets Mem. Controllers/ Channels/ Figure is from Gomez-Luna et al.,
Processor Frequency Socket Mem. Controller “Benchmarking a New Paradigm...”,
, arXiv, July 2021
2,556-DPU System Intel Xeon Silver 4215 [209] 2.50 GHz 2 2 3

Pretty good match for our PIM model
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