
Processing-in-Memory: Theory & Practice

Phillip B. Gibbons

Carnegie Mellon University

EMERALD Workshop

21 June 2024

• Data movement is often the dominant cost.

• Processing-in-memory
(a.k.a., near-data-processing)
enables compute to be pushed to memory.

=> Saves data movement.

Why Processing-in-Memory

3

• Idea back to 1970

• New 3D die-stacked memory
cubes

• Low-latency, high-bandwidth
local memory access

Why Processing-in-Memory now

4

SAMSUNG FIMDRAM

Foundations of PIM (?)

Amount of recent (2010-2020) PIM research on:

• Systems / architecture / technology side?

• Theory / algorithms side?

100+ papers

~3 papers (as of 2020)

5

• Host CPU side:
• Parallel cores with shared cache

• PIM side:
• Many PIM modules, each with a core

& a memory

• All communication between
components go through the network.

6

Generic PIM System

• CPU side:
• Parallel cores with shared cache

of size𝑀𝑀 ≪ 𝑛𝑛 words

• PIM side:
• 𝑃𝑃 PIM modules, each with a core

& a memory of size Θ(𝑛𝑛/𝑃𝑃) words

• All communication between
components go through the network.

7

The Processing-in-Memory Model

𝑛𝑛 = total memory size[Kang, Gibbons, Blelloch, Dhulipala, Gu, McGuffey, SPAA’21]

Computationally, what is distinctive about PIM?

• Strawman 1: Treat entirely as a
shared-memory model
• Emulate shared memory on PIM modules,

using hashing
• But would make all memory accesses non-local!

• Strawman 2: Treat entirely as a
distributed-memory model
• Ignore the available shared memory
• But would lose the potential benefits (we show)

of using the shared memory

8

Distributed Memory with a powerful Shared Memory front-end
(Bulk-synchronous offload of compute)

Pushing Compute to Memory
Inherent tension between

• Minimizing communication

• Achieving load balance

• (Without replication causing a blow up in space and/or update costs)

Example: Range Partitioned Index
Prior Work

0 V 2 V 6 V 7 V 15 V 20 V 25 V 33 V

0 6 7 25

PIM
Module 1

PIM
Module 2

PIM
Module 3

PIM
Module 4

0 6 7 25 CPU

10

Get: 7 8 9 10

Bottleneck: Fully serializes the batch of Get operations
Overcoming bottleneck: Need smart mix of randomization & replication

Our Approach: PIM-Tree (simplified view)
Assuming 4 PIM modules (P = 4)

Randomly distributed lower part of height log(P)

Replicated upper part with O(n/P) nodes

11 Batch-parallel execution of adversarial batches

0 V 2 V 6 V 7 V-∞ 15 V 20 V 25 V 33 V

-∞ 0 6 7 25

-∞ 0 7

-∞ 7

-∞ 0 7

-∞ 7

-∞ 0 7

-∞ 7

-∞ 0 7

-∞ 7

Left Out

[Kang, Zhao, Blelloch, Dhulipala, Gu, McGuffey, Gibbons
VLDB’23 Best Paper Runner-up]

0 V 2 V 6 V 7 V-∞ 15 V 20 V 25 V 33 V

-∞ 0 6 7 25

-∞ 0 7

-∞ 7

-∞ 0 7

-∞ 7

-∞ 0 7

-∞ 7

-∞ 0 7

-∞ 7

But Load Imbalance Persists
Predecessor Search

7

7 777

-∞ -∞-∞-∞7 777

7 V

Get: 8 10 12 14

Key Insight: Push-Pull Search
Independently for each PIM module:
CPU side dynamically decides whether to

• push queries to the PIM-tree node or

• pull the node’s keys back to the CPU

…based on which moves less data

Host CPU is great for hot spots over limited memory: So use it!

Results Against Prior PIM-based Indexes

Pred() Throughput on Zipf workloads on UPMEM

Up to 59X improvement !

Plus: Good Asymptotic Bounds on all Metrics

Results Against CPU-based Indexes

Experiments on Wikipedia dataset
vs. SOTA shared-memory Indexes

Communication on Zipf workloads
vs. prior indexes

* Bars are throughputs; ‘+’ are communications
≤ 𝟎𝟎.𝟑𝟑X Communication !

Results for First Generation PIM
Recent: Left blue bars for PIM-tree removed by optimizing UPMEM communication library

Other Completed and Ongoing Results
• PIM-trie: PIM-optimized radix tree

• PIM optimized spatial index (zd-tree)

• Designing entire PIM-optimized DBMS (skew-resistant)

• Host CPU is beneficial due to
its asymmetrically-high bandwidth

[Kang, Zhao, Blelloch, Dhulipala, Gu, McGuffey, Gibbons, SPAA’23]

Future: PIM-equipped CXL

Compute Here
e.g., CXL-enabled FPGA

Slide from Samuel Thomas’ EMERALD presentation on CXL, with “Compute Here” added

Foundations of PIM: Project Team

18

Hyoungjoo Kim
CMUYiwei Zhao

CMU

Backup Slides

UPMEM’s PIM System

Pretty good match for our PIM model

DRAM Processing Unit (DPU)

Figure is from Gomez-Luna et al.,
“Benchmarking a New Paradigm…”,

arXiv, July 2021

	Processing-in-Memory: Theory & Practice
	Why Processing-in-Memory
	Why Processing-in-Memory now
	Foundations of PIM (?)
	Slide Number 6
	Slide Number 7
	Computationally, what is distinctive about PIM?
	Pushing Compute to Memory
	Example: Range Partitioned Index
	Our Approach: PIM-Tree (simplified view)
	But Load Imbalance Persists
	Key Insight: Push-Pull Search
	Results Against Prior PIM-based Indexes
	Results Against CPU-based Indexes
	Other Completed and Ongoing Results
	Future: PIM-equipped CXL
	Foundations of PIM: Project Team
	Slide Number 19
	UPMEM’s PIM System

