Processing-in-Memory: Theory & Practice

Phillip B. Gibbons

Carnegie Mellon University

EMERALD Workshop
21 June 2024

Why Processing-in-Memory
* Data movement is often the dominant cost.

* Processing-in-memory
(a.k.a., near-data-processing)

enables compute to be pushed to memory.

=> Saves data movement.

256-bit buses

256-bit access
8 kB SRAM

m | .| 26pJ

50 pJ

Dally, HIPEAC 2015

'r'

256 pJ 16 nJ I paw:
I

Efficient
00 P It chip link

A memory access consumes ~1000X
the energy of a complex addition

Why Processing-in-Memory now

* |dea back to 1970

Memory dies
Abstract

* New 3D die-stacked memory load/store interface
cubes \

Timing-specific
DRAM
interface

* Low-latency, high-bandwidth
local memory access

PIM &
DRAM controller

'l * ®] = 5 — . - . - _--_ Q0. .: /1 g 7 : L 2 ¥ = I
7 AEAE LR G ’ ' .
& ; s . EE ST
o & ; . L \
nber 825 : s ait a a.n.a bl \?K-‘ 1 N . 4 : s
45 ot g . = . :
J ’ 1] s aw : Wk = " 2 e LT b 3
et aRcaR®T vt . . : L : _ S o
= -t . ¥ = . L S .
L b Srlapidie us ' U8 3 ¥ S
ety 1 : 3
r - e 5
r—-— - = b -::.
= - = - ~ - 3
-} g T e t L ’
Ex : > 5 : i § L B e
1 -] ||
= '. g . .
e b = = = = - e T |
i W - - = _ .y
WK . . 7 sty ke
- N E
: ‘e
= = 1 Mk MR WR EEE . F -
=]] ¥ EE wWeE L -]

PEEEH 8 EELECEECTECEECLEEEEELELE . S

Foundations of PIM (?)

Amount of recent (2010-2020) PIM research on:
« Systems / architecture / technology side? 100+ papers

* Theory / algorithms side? ~3 papers (as of 2020)

Generic PIM System

* Host CPU side:
* Parallel cores with shared cache

* PIM side:

* Many PIM modules, each with a core
& a memory

* All communication between

components go through the network.

5

E
E
S
s
s

site E18

AR

{4 It

.4
e

3#5?

EEfpEIELE L tttl.tt i)

The Processing-in-Memory Model

* CPU side:

* Parallel cores with shared cache
of size M <« n words

* PIM side:

e P PIM modules, each with a core
& a memory of size O(n/P) words

e All communication between

components go through the network.

[Kang, Gibbons, Blelloch, Dhulipala, Gu, McGuffey, SPAA'21]

cores
CPU

side Shared Memory
M words

/ Network \

Local Memory
PIM | @(n/P)words | 44
side

Local Memory
®(n/P) words

core core

P PIM Modules

N = total memory size

Computationally, what is distinctive about PIM?

e Strawman 1: Treat entirely as a

shared-memory model

* Emulate shared memory on PIM modules,
using hashing

* But would make all memory accesses non-local!

e Strawman 2: Treat entirely as a

distributed-memory model
* |gnore the available shared memory

* But would lose the potential benefits (we show)
of using the shared memory

cores
CPU

side Shared Memory
M words

/ Network \

Local Memory
®(n/P) words

Local Memory
PIM | @(n/P)words | 44
side

core core

P PIM Modules

Distributed Memory with a powerful Shared Memory front-end

(Bulk-synchronous offload of compute)

Pushing Compute to Memory

Inherent tension between

* Minimizing communication
* Achieving load balance

* (Without replication causing a blow up in space and/or update costs)

Example: Range Partitioned Index

Prior Work

Get: 7 8 9 10

0|6 |7 25 CPU

9 P\ L |\ W\ 20 V
IM PIM
Module 2 Module 3

Bottleneck: Fully serializes the batch of Get operations

PIM

Module 1

Module 4

Overcoming bottleneck: Need smart mix of randomization & replication

Our Approach: PIM-Tree (simplified view)
Assuming 4 PIM modules (P = 4)

Replicated upper part with O(n/P) nodes

‘=) SEh 480 Gan

Randomly distributed lower part of height log(P)

[Kang, Zhao, Blelloch, Dhulipala, Gu, McGuffey, Gibbons

Batch-parallel execution of adversarial batches
VLDB’23 Best Paper Runner-up] " P

But Load Imbalance Persists

Predecessor Search

Get: 8 10 12 14

L] 7 5 7

Key Insight: Push-Pull Search

Independently for each PIM module:
CPU side dynamically decides whether to

* push queries to the PIM-tree node or
* pull the node’s keys back to the CPU

...based on which moves less data

“._:= i :

-

Host CPU is great for hot spots over limited memory: So use it!

w S
©c U Q

Ul

©

13

Ul

5.2

= = N N W

©

Performance (Mop/s)

o u

31.44
14.0¢

e
o
el

+

e

()

o
Performance Improvement

0.6
Parameter a in Zipfian Distribution

—
0.8

Results Against Prior PIM-based Indexes

Up to 59X improvement !

PIM-Tree

[Partitioned Skip List

Improvements of PIM-Tree
over Partitioned Skip List

Pred() Throughput on Zipf workloads on UPMEM

Plus: Good Asymptotic Bounds on all Metrics

< (0.3X Communication !

Results Against CPU-based Indexes

* Bars are throughputs; '+ are communications

[1 PIM-Tree
[Brown (a,b)-Tree |
[Bronson BST

634

£ 6000 I PIM-Tree: CPU-DRAM
Q [1 PIM-Tree: CPU-PIM
E [range-partitioning: CPU-DRAM
Q 5000 I range-partitioning: CPU-PIM 25
- == Brown (a,b)-Tree: CPU-DRAM)
[Bronson BST: CPU-DRAM 3

2 4000 §20
© =
v +
= 3000 > 15

L
z S
= c

-
@ 1000 I 113
e
5‘ '

0 .
0 Predecessor Predecessor Insert Insert Predecessor
a=0 a=1 a=0 a=1

Communication on Zipf workloads
VS. prior indexes

Results for First Generation PIM

Insert

2040
.

Experiments on Wikipedia dataset
vs. SOTA shared-memory Indexes

2000

Ul
o
o

o

 —
o
o
o

Bytes Transmitted per

Recent: Left blue bars for PIM-tree removed by optimizing UPMEM communication library

Other Completed and Ongoing Results

PIM-trie: PIM-optimized radix tree [Kang, Zhao, Blelloch, Dhulipala, Gu, McGuffey, Gibbons, SPAA’23]

PIM optimized spatial index (zd-tree)

Designing entire PIM-optimized DBMS (skew-resistant)

Host CPU is beneficial due to
its asymmetrically-high bandwidth

cores

CPU

side Shared Memory
M words

/ Network \

Local Memory Local Memory
PIM O(n/P)words | g9e | ©(m/P) words
side

core core

P PIM Modules

Future: PIM-equipped CXL

Number of DIMMm
Slots!
Access memory Compute Here

devices via I/0

e.g., CXL-enabled FPGA J
Scalable capacity

J Increased potential
bandwidth

-=-hardware node distances:
7891011 fnode 0 1
e 0: 10 20 CXL
1: 20 10
CXL MemOW No good programming
model (yet)!

1 -based memory pooling systems for cloud platforms e =

Slide from Samuel Thomas’ EMERALD presentation on CXL, with “Compute Here” added

oundations of PIM: Project Team

Hongbo Kang i

The Processing-in-Memory Model

Backup Slides

UPMEM’s PIM System

PIM chip DRAM Processing Unit (DPU)
. N
Main Memo e
ry{b)/ Control/Status Interface 4——>[DDR4 Interface]
i N Yl ™ A {ﬁ;\.\‘ ‘FH A 4 "‘\

DRAM||DRAM|[DRAM||DRAM lnmn DRAM J/ - ~0)

Chip E‘hi’pﬁ rl:'h.l'p‘ rCMF Ehl'pﬁ Irl';'."n“,r:.n , _\1\"\:\
pram|(oram|[DrRAM)[DRAM|(DRAM)[DRAM / s T e) . \

Chip || Chip || Chip || Chip || Chip || Chip / W

— "M - ém o lqp 24°KB «—
/ S FETCH3) IRAM)
b, | <[READOPL] (2 = 64-MB
—~ @ & READOP2 | - D | 54 bits

’ 7 aTd ™) N -:\1.“\.H E READOP3 |.|=.| H DRAM

anun:-;"1 FPIH PIM || PIM rPjnr,ng-ir PIM 9 Fiﬁ”f"r r) < Bank

) :Cmp:: ::Emp:: ::I'.'mp: ;Cmp:: ::Emp:: ::I'.'mp g E M_KB ! (HMH)
piM || pIm || PIm || PIM || PIM || PIM || = ALU3 <> WRAM <+» O
| chip J{ chip || chip)| chip || chip)| chip / 0 ALU4 s
X\ 8 [TMERGE1
S 0. [MERGE2 . 3) O
PIM-enabled Memory . — / X8
o J
PIM-enabled Memory DRAM Memory
Svstem DIMM Number of Ranks/ DPUs/ Total DPU Total Number of Total
Codename DIMMs DIMM DIMM DPUs Frequency Memory DIMMs Memory
2,556-DPU System P21 20 2 128 E,.EEEII:'1 350 MHz 159.75 GB 4 256 GB
CPU
System CPU CPU Sockets Mem. Controllers/ Channels/ Figure is from Gomez-Luna et al.,
Processor Frequency Socket Mem. Controller “Benchmarking a New Paradigm...”,
, arXiv, July 2021
2,556-DPU System Intel Xeon Silver 4215 [209] 2.50 GHz 2 2 3

Pretty good match for our PIM model

	Processing-in-Memory: Theory & Practice
	Why Processing-in-Memory
	Why Processing-in-Memory now
	Foundations of PIM (?)
	Slide Number 6
	Slide Number 7
	Computationally, what is distinctive about PIM?
	Pushing Compute to Memory
	Example: Range Partitioned Index
	Our Approach: PIM-Tree (simplified view)
	But Load Imbalance Persists
	Key Insight: Push-Pull Search
	Results Against Prior PIM-based Indexes
	Results Against CPU-based Indexes
	Other Completed and Ongoing Results
	Future: PIM-equipped CXL
	Foundations of PIM: Project Team
	Slide Number 19
	UPMEM’s PIM System

