Synchronization using RDMA:
High Performance, Programmability,
and Scalability

Roberto Palmieri

Scalable Systems & Software Research Group
Lehigh University

1st Workshop on Distributed Computing with Emerging Hardware Technology

) SCALABLE SYSTEMS
DB) ResEarc ¢
AL/ 1Y) RESEARCH GROUP

The Rise of RDMA

memory on another node
Remote * Sub-microsecond latencies

* > 200 Gbps bandwidth
Direct

I N
\ 1
e Allows a process to directly interact with Q_ ’
7/
.
\ ~
\

M TPC/IP RDMA
emory
* Channel semantics * Memory and channel semantics
ACCGSS * Implemented by kernel I:> * Two-sided operations
* Send/Receive * Send/Receive
programming model * One-sided operations
Slow! * Read/Write/CAS

%& cormuge _
& SOFTWARE
_' M RESEARCH GROUP 2

A Traditional View of Concurrent Systems

Multicore Shared-memory
Concurrency Concurrent
primitives systems
Distributed Message-passing
Target Deployment Communication Model Building Blocks Implementation

% csormuge - _
& SOFTWARE
-‘ M RESEARCH GROUP 3

A Modern View of Concurrent Systems

Multicore

RDMA

Shared-memory

read/write/CAS

Distributed

Target Deployment

Message-passing

Two-sided
(send/receive)
RDMA

Communication Model

Concurrency
primitives

Building Blocks

Concurrent
systems

Implementation

) SCALABLE SYSTEMS
1) & SOFTWARE
~AL/BY) RESEARCH GROUP

4

Problem solved!

Shared-memory application

RDMA one-sided operations: READ/WRITE/CAS

Distributed application!

%& SCALABLE SYSTEMS
& SOFTWARE
_' N RESEARCH GROUP >

5
DR

Problem Isolved @

Is topology

important? .
What if processes

access RDMA
memory with
shared-memory API?

What if the system
size grows beyond _memory applIC

tens of nodes?

What’s the
NUMA effect on What if we have
RD RDMA operations? arbitrary-sized E

objects?

—
What if writers don’t
wait for the ‘ How do we reclaim

completion’s remote memory
notification? = How do we N efficiently?
implement wait-free

[
RDMA operations?

SCALABLE SYSTEMS
& SOFTWARE 6
RESEARCH GROUP

Handling RDMA One-sided Operations

1 pp posts to its SQ to initiate RDMA request

2 Local RNIC fetches req. from memory and 3 issues it

4 Remote RNIC processes req. directly in memory and ‘s responds
6 Local RNIC notifies pp of result through CQ 7

: 1 —— 2 ANIC - m 3 l%“r——— = . pg: Remote process using RDMA

Pr » 8Q ! = = ﬁ:ﬂ_‘_) 4 TM‘T | —% py: Local process using native access
: Q E—— : _ :

: /l\ | —, In L SQu Send.queue

; : 5 _ : : RQ: Receive queue (unused)

. @2 <— 6 : " RNIC . €Q: Completion queue

..

%& csormuge - _
& SOFTWARE
_' M RESEARCH GROUP /

Our TO-DO list

 Studying the performance implications of RDMA and NUMA [srps’15]

* A new lock primitive to synchronize local (shared-memory) processes
and remote (RDMA) processes [spaa24]

* An open-source library for programmers to develop RDMA-enabled
applications and systems that use one-sided operations.

* Remus (https://github.com/sss-lehigh)

* A new RDMA-aware object that enabled non-blocking remote
traversals [Ba spaa’24]

 Studying the impact of network topology on RDMA scalability
* Designing RDMA-aware directory for memory object moment

* RDMA and GPUs, a unified framework to develop distributed
heterogeneous data structures

%& csormuge - _
& SOFTWARE
_‘ M RESEARCH GROUP 8

In progress...

ALock: Asymmetric Lock Primitive for
RDMA Systems

[SPAA "24]

Amanda Baran, Jacob Nelson-Slivon, Lewis Tseng, Roberto Palmieri

Sy ssomuee _
& SOFTWARE
_' M RESEARCH GROUP 9

Mutual Exclusion in the absence of global atomicity

e Shared-memory CAS and RDMA CAS are not atomic with each other!

-----......

* Solution:
* Local workload uses RDMA loopback

* Problem:
e Saturation of RDMA loopback
e side-effect -> whole distributed system can slo

Access (8B) Remote (,RDMA) Goal:

Read Write CAS * Local processes should use shared
— Read | Yes Yes Yes memory operations
S| Write | Yes Yes No * Remote processes should limit the
= | RMW Yes Yes No number of RDMA operations

%& csormuge - _
& SOFTWARE
-' M RESEARCH GROUP 10

Inspiration

* Lock Cohorting

* Hierarchical lock was originally used in systems with =— Mem. ..
NUMA-like behaviors .. 0..

* Processes who behave similarly (a cohort) compete ..0 L
amongst themselves first

* Leaders of each cohort compete for the global lock

. Remote (RDMA)

* Peterson’s Algorithm Access (8B) |pead Write CAS
Read Yes Yes Yes
Write Yes Yes No
RMW Yes Yes No

* Two-process mutual exclusion algorithm using only
atomic read/write operations

Local

%& csormuge - _
& SOFTWARE
-' M RESEARCH GROUP 11

Lock Cohorting + Peterson’s Algorithm

SRS o
el e o

AlLock residing on Node C

tail

Ria T=|Ria JL% Ryp

V
=
!
=

Local Cohort

) SCALABLE SYSTEMS
1) & SOFTWARE
ALY/ RESEARCH GROUP

AlLock Performance

* High performance in both high locality and with high contention

100% Local Legend Lock Type Percent Local
Lock Type Keys e Al ock o= (.85
e Alock == 20 MCS -#: 09
= MCS =4 100 s Spin «l= 095
Spin sl 1000
]
. 1e8 100% LUCE', 10 Nodes 1e8 20 KE}"& 10 Nodes
m aamEEN — m—
TﬁI“..". ' _.,..-I""'.,.-ll"'. -'-_-!
s 27 Il e 107 /‘--.-' _
5 -2 u
o =
i - i .' -——‘._'."—- _
2
< _
0 — 0.0 1= —a—x —
4 8 12 4 8 12

% SCALABLE SYSTEMS
& SOFTWARE
JALIN) RESEARCH GROUP 13

ROMe: Remote Object Memory

[BA SPAA'24]

Jacob Nelson-Slivon, Reilly Yankovich, Ahmed Hassan, Roberto Palmieri

%& csormuge - _
& SOFTWARE
-' M RESEARCH GROUP 14

Motivating question

* Can we design a semantic object to allow remote threads to perform
consistent non-blocking range queries?

* Problem:
* Local and remote writes/reads are consistent only within one cache line

%& csormuge - _
& SOFTWARE
_' M RESEARCH GROUP 15

The ROMe object

Base Region (immutable) 42

777/ Log Region

o Base Region
o Immutable memory region representing initial state

o Active Region
o Current Log offset (CLO) and other user-defined metadata to be updated in
place

e Log region
o Updates to base region

e Supplemental region
o Any additional metadata required for synchronization

%& SCALABLE SYSTEMS
& SOFTWARE
JALIN) RESEARCH GROUP 16

ROMe-KV
* Writes

* Remote writes are sent to the host machine,
which performs them locally

e Set metadata for reads to reconstruct the
current state of memory . /

* Reads ﬁ? } RVEZ\‘»

* Remote reads use RDMA S

* Local reads avoid RDMA entirely 128 610 50

* |t requires exactly two RDMA read |, o Y T 3
operations regardless of size bk i Sl

* One to read the metadata set (must fit one
cache line) by the writers

* One to read the object itself

%& csormuge - _
& SOFTWARE
_' M RESEARCH GROUP 17

What about RDMA scalability?

18

Queue Pair (QP) Thrashing

* QP information is needed to serve RDMA requests

* RNIC has a relatively small on-card memory
* RNIC must fetch QP info from memory if not cached
* If no room, then RNIC must evict something = thrashing

Performance
degrades even
further with QP

sharing!

% csormuge - _
& SOFTWARE
-‘ M RESEARCH GROUP 19

What if we use a preferred topology instead?

* Processes can still connect to all but they are likely to
access memory allocated on a subset of nodes

* This set of preferred nodes per node will likely be
cached in the RDMA internal memory

* The system size can grow, as long as the set of
preferred nodes stays small

* The system should be designed so that:
* Threads could use any QP to issue RDMA operations

* BUT they should be accessing memory only from
the preferred node for the most part

% SCALABLE SYSTEMS
& SOFTWARE
JALIN) RESEARCH GROUP 20

= NUMA?

NU(R)MA = Non-Uniform Remote Memory Access

e Extends (?) the idea of NUMA to include remote memory accesses

* NU(R)MA-aware programming means tailoring remote accesses to
minimize the number of QPs a node needs to communicate

* Upon a memory access

* If local

* Follow NUMA-aware design

e Use shared-memory APIs to synchronize (e.g., ALock)
* |If remote

 Use RDMA one-sided operations

 Memory should be on a preferred node
* If not, a more expensive remote operation should be performed

%& SCALABLE SYSTEMS
& SOFTWARE
._' N RESEARCH GROUP 21

Thanks! & Questions?

https://sss.cse.lehigh.edu/

GitHub repo:
https://qgithub.com/sss-lehigh

Sy ssomuee _
& SOFTWARE
-' M RESEARCH GROUP 22

