
Synchronization using RDMA:
High Performance, Programmability,

and Scalability

Roberto Palmieri
Scalable Systems & Software Research Group

Lehigh University

1st Workshop on Distributed Computing with Emerging Hardware Technology

• Allows a process to directly interact with
memory on another node

• Sub-microsecond latencies
• > 200 Gbps bandwidth

The Rise of RDMA

2

TPC/IP RDMA

• Memory and channel semantics
• Two-sided operations

• Send/Receive
• One-sided operations

• Read/Write/CAS

• Channel semantics
• Implemented by kernel
• Send/Receive

programming model
Slow!

emote

irect

emory

ccess

Concurrency
primitives

3

A Traditional View of Concurrent Systems

Concurrent
systems

Message-passingDistributed

Shared-memoryMulticore

Communication Model Building Blocks ImplementationTarget Deployment

Concurrency
primitives

4

A Modern View of Concurrent Systems

Concurrent
systems

Message-passingDistributed

Shared-memoryMulticore

Target Deployment Communication Model Building Blocks Implementation

Two-sided
(send/receive)

RDMA

RDMA
read/write/CAS

5

Shared-memory application

RDMA one-sided operations: READ/WRITE/CAS

Distributed application!

Problem solved!

Problem !solved

6

Shared-memory application

RDMA one-sided operations: READ/WRITE

Distributed application!

What if the system
size grows beyond

tens of nodes?

Is topology
important?

What if writers don’t
wait for the

completion’s
notification?

What’s the
NUMA effect on

RDMA operations?

How do we
implement wait-free
RDMA operations?

What if processes
access RDMA
memory with

shared-memory API?

How do we reclaim
remote memory

efficiently?

What if we have
arbitrary-sized

objects?

Handling RDMA One-sided Operations

𝑝𝑅 posts to its SQ to initiate RDMA request

Local RNIC fetches req. from memory and issues it

Remote RNIC processes req. directly in memory and responds

Local RNIC notifies 𝑝𝑅 of result through CQ

7

𝒑𝑹: Remote process using RDMA
𝒑𝑳: Local process using native access

SQ: Send queue
RQ: Receive queue (unused)
CQ: Completion queue

2 31

4

5
67

1

2 3

4 5

6 7

Our TO-DO list
• Studying the performance implications of RDMA and NUMA [SRDS’15]

• A new lock primitive to synchronize local (shared-memory) processes
and remote (RDMA) processes [SPAA’24]

• An open-source library for programmers to develop RDMA-enabled
applications and systems that use one-sided operations.
• Remus (https://github.com/sss-lehigh)

• A new RDMA-aware object that enabled non-blocking remote
traversals [BA SPAA’24]

• Studying the impact of network topology on RDMA scalability

• Designing RDMA-aware directory for memory object moment

• RDMA and GPUs, a unified framework to develop distributed
heterogeneous data structures

8

In
 p

ro
gr

es
s…

ALock: Asymmetric Lock Primitive for
RDMA Systems

[SPAA ’24]

Amanda Baran, Jacob Nelson-Slivon, Lewis Tseng, Roberto Palmieri

9

Mutual Exclusion in the absence of global atomicity

10

• Shared-memory CAS and RDMA CAS are not atomic with each other!

• Solution:
• Local workload uses RDMA loopback

• Problem:
• Saturation of RDMA loopback

• side-effect -> whole distributed system can slow down

Goal:
• Local processes should use shared

memory operations
• Remote processes should limit the

number of RDMA operations

Inspiration

11

• Lock Cohorting
• Hierarchical lock was originally used in systems with

NUMA-like behaviors

• Processes who behave similarly (a cohort) compete
amongst themselves first

• Leaders of each cohort compete for the global lock

• Peterson’s Algorithm
• Two-process mutual exclusion algorithm using only

atomic read/write operations

12

L1 L2

L4L3

Local Cohort

R1A

Remote Cohort

R2A

R3A

R4A

R1B

R2B

R4BR3B

ALock residing on Node C

L4L2L3

P

R1A
R1A R4B R4A R2A

Lock Cohorting + Peterson’s Algorithm

ALock Performance

• High performance in both high locality and with high contention

13

ROMe: Remote Object Memory
[BA SPAA’24]

14

Jacob Nelson-Slivon, Reilly Yankovich, Ahmed Hassan, Roberto Palmieri

Motivating question

• Can we design a semantic object to allow remote threads to perform
consistent non-blocking range queries?

• Problem:
• Local and remote writes/reads are consistent only within one cache line

15

The ROMe object

● Base Region
○ Immutable memory region representing initial state

● Active Region
○ Current Log offset (CLO) and other user-defined metadata to be updated in

place
● Log region

○ Updates to base region
● Supplemental region

○ Any additional metadata required for synchronization

16

ROMe-KV
•Writes

• Remote writes are sent to the host machine,
which performs them locally

• Set metadata for reads to reconstruct the
current state of memory

• Reads
• Remote reads use RDMA
• Local reads avoid RDMA entirely
• It requires exactly two RDMA read

operations regardless of size
• One to read the metadata set (must fit one

cache line) by the writers
• One to read the object itself

17

What about RDMA scalability?

18

Queue Pair (QP) Thrashing

• QP information is needed to serve RDMA requests

• RNIC has a relatively small on-card memory
• RNIC must fetch QP info from memory if not cached

• If no room, then RNIC must evict something → thrashing

19

Performance
degrades even
further with QP

sharing!

What if we use a preferred topology instead?

20

• Processes can still connect to all but they are likely to
access memory allocated on a subset of nodes

• This set of preferred nodes per node will likely be
cached in the RDMA internal memory

• The system size can grow, as long as the set of
preferred nodes stays small

• The system should be designed so that:

• Threads could use any QP to issue RDMA operations

• BUT they should be accessing memory only from
the preferred node for the most part

= NUMA?

NU(R)MA = Non-Uniform Remote Memory Access

• Extends (?) the idea of NUMA to include remote memory accesses

• NU(R)MA-aware programming means tailoring remote accesses to
minimize the number of QPs a node needs to communicate

• Upon a memory access
• If local

• Follow NUMA-aware design

• Use shared-memory APIs to synchronize (e.g., ALock)

• If remote
• Use RDMA one-sided operations

• Memory should be on a preferred node
• If not, a more expensive remote operation should be performed

21

Thanks! & Questions?

22

GitHub repo:
https://github.com/sss-lehigh

https://sss.cse.lehigh.edu/

