
The Effects of Fast I/O on Concurrent 
Computing

Naama Ben-David



I/O Speeds

Memory

Storage

Memory

CPU CPU

Traditionally, systems only optimize I/O
Now must optimize in memory processing and parallelism too

CPUCPU CPU CPU

0

125

250

375

500

Local I/O



CPU Bottleneck

Meerkat: Multicore-Scalable Replicated Transactions Following the Zero-Coordination Principle. Szekeres et al EuroSys’20

eRPC — modern fast message passing 
UDP — traditional message passing

Incrementing atomic 
counter bottlenecks 

system with fast 
messaging

Incrementing atomic 
counter has no 
effect with slow 

messaging



How can we optimize 
concurrency in I/O systems?



Transactions
Data system

Data items

Transactions specify which data items to read and write (read and write sets)

Memory locations

Implemented via accesses to memory locations
Serializability: transactions either commit atomically or abort with no effect



In This Talk

Distributed Transactional Systems On-Disk Transactional Systems

Storage

Memory



Serializable 
transactions
Serializable 
transactions
Serializable 
transactions
Serializable 
transactions

Distributed Transactional Systems

Network

Distribute for:

• More data storage

• Decreased workload 

• Fault tolerance

• … 

Performance bottlenecks 

Traditionally: network 
Today: also in-node

Expensive!

Clean, powerful abstractionGoal: few round 
trips to commit

Parallelism within 
each node



How do we make use of 
parallelism in each node?



Parallel Performance

• Disjoint access parallelism: if the data sets of two transactions do not 
overlap, their shared memory accesses shouldn’t overlap


• Invisible reads: a larger read set shouldn’t cause more shared memory 
modifications

Avoid contention



Serializable 
transactions

Serializable 
transactions

Serializable 
transactions

Serializable 
transactions

Distributed Transactional Systems

Network

Distribute for:

• More data storage

• Decreased workload 

• Fault tolerance

• … 

Performance bottlenecks 

Traditionally: network 
Today: also in-node

Expensive!

Goal: few round 
trips to commit

Parallelism within 
each node



Fast Decision 
Intuition: In good executions, transactions commit as fast as possible 

Challenge: Transactions need different amounts of time to find out their data set

Distributed Performance

In a synchronous failure-free execution with no conflicts,  
a transaction must terminate within one network round trip  

after some process knows its data set 



Fast decision 

Invisible reads 

Disjoint access parallelism 
Serializability

No sharded system guarantees 
weak progress and

Main Result: FIDS Theorem
 ∃n . Dn ⊂ D

Non-triviality; 
Cannot abort if no 

concurrent 
transactions

[B Sela Szekerez DISC’23]



In This Talk

Distributed Transactional Systems On-Disk Transactional Systems

Storage

Memory

Impossibility Result



Transactional Databases

StorageMemory

Key question: can data fit in memory?

Yes: 
In-memory database

Memory

No: 
On-Disk Database

Only in-use keys are in 
memory



Concurrency Control Mechanisms

In-Memory 

• Usually, per-key timestamps


• Example: maintain read and 
write timestamps


• Fine grained concurrency 
control, few aborts

On-Disk 

• Usually, timestamp/metadata 
per ongoing transaction


• Heavy-weight comparison 
against all ongoing 
transactions before commit


• Higher abort rate

Too big for on-disk!

Too slow for fast storage!



How can we get in-memory CC 
speeds with less metadata?



Our Solution: Approximate Timestamping

Hash Table

Sketch

tsmp

Ref count

For all other keys

For in-use keysHow many 
transactions are 
using this key?

Approximate 
timestamp of 
dormant keys

When ref count hits 0, key moves back to sketch, min/max with current entry

[Hwang B Conway Garcia-Alvarado Johnson Szekerez Yuan]



Experimental Results

Traditional on-
disk CC

In-memory CC 
mechanisms, run 

with on-disk 
database

Variants of our 
approach

Write-intensive workload, YCSB

[Hwang B Conway Garcia-Alvarado Johnson Szekerez Yuan]



In This Talk

Distributed Transactional Systems On-Disk Transactional Systems

Storage

Memory

Impossibility Result Approximate Timestamping



Concluding Thoughts

• Faster I/Os are changing how concurrency should be used in large systems


• Showed impossibility in distributed concurrent transactions;


• What are good algorithms that optimize both parallelism and 
network communication as much as possible? 

• Only considered transactional systems;


• How do fast I/Os affect other problems in concurrent computing?

Thank you!


