The Effects of Fast |/0O on Concurrent
Computing

Naama Ben-David

o A

Techmon

e of Technology

M]

/0 Speeds

500

Traditionally, systems only optimize I/0

Now must optimize in memory processing and parallelism too

CPU Bottleneck

eRPC — modern fast message passing
UDP — traditional message passing

~65— eRPC

—— UDP
-¥- eRPC + atomic counter
->~ UDP + atomic counter

Incrementing atomic
counter bottilenecks

system with fast
messaging

B
"
— -
—

Incrementing atomic
.. ,+ v counter has no
" — m— NG % effect with slow

2 4 6 8 10 12 14 messaging
Number of server threads

Throughput (million PUTs/sec)

o I = TS
- w @) () N un Q0
1 1 1 1 1 1 1

Meerkat: Multicore-Scalable Replicated Transactions Following the Zero-Coordination Principle. Szekeres et al EuroSys’20

How can we optimize
concurrency in |I/O systems?

Transactions

Data items Memory locations

Transactions specify which data items to read and write (read and write sets)

Implemented via accesses to memory locations
Serializability: transactions either commit atomically or abort with no effect

In This Talk

Serializable Serializable
transactions transactions

Storage

Network

Serializable Serializable
transactions transactions

Distributed Transactional Systems

On-Disk Transactional Systems

Distributed Transactional Systems

Parallelism within

& each node Distribute for:

 More data storage
e Decreased workload
e Fault tolerance

Performance bottlenecks
Traditionally: network

CleanGRalvERWIraH8Haction Today: also in-node
trips to commit

How do we make use of
parallelism in each node?

Parallel Performance

Avoid contention

 Disjoint access parallelism: if the data sets of two transactions do not
overlap, their shared memory accesses shouldn’t overlap

* Invisible reads: a larger read set shouldn’t cause more shared memory
modifications

Distributed Transactional Systems

Parallelism within
& each node

Serializable

Serializable

transactions transactions

Expensive!

¥

Network

Serializable Serializable

transactions

transactions

" Goal: few round
trips to commit

Distribute for:

 More data storage

* Decreased workload
e Fault tolerance

Performance bottlenecks
Traditionally: network
Today: also in-node

Distributed Performance

Fast Decision

Intuition: In good executions, transactions commit as fast as possible

Challenge: Transactions need different amounts of time to find out their data set

In a synchronous failure-free execution with no conflicts,

a transaction must terminate within one network round trip
after some process knows its data set

Main Result: FIDS Theorem

harded system guarantees

weak progress and

Non-triviality;
Cannot abort if no
concurrent
transactions

Fast decision
Invisible reads

Disjoint access parallelism

Serializability
B Sela Szekerez DISC’23]

In This Talk

Serializable Serializable
transactions transactions

Storage

Network

Serializable Serializable
transactions transactions

On-Disk Transactional Systems

ﬁstributed Transactional Systems
Impossibility Result

Transactional Databases

Key question: can data fit in memory?

Yes: \ No:
In-memory database On-Disk Database

Only in-use keys are in
memory

Concurrency Control Mechanisms

In-Memory ' On-Disk
Too big for on-disk!

-l Usually, per-key timestamps I

 Example: maintain read and
write timestamps

e Usually, timestamp/metadata
per ongoing transaction

| Heavy-weight comparison
against all ongoing

transactions before commit
Too slow for fast storage!

* Higher abort rate

* Fine grained concurrency
control, few aborts

How can we get in-memory CC
speeds with less metadata?

Our Solution: Approximate Timestamping

tsmp

Hash Table
Ref count

How many For in-use keys
transactions are

using this key? |

timestamp of

For all other keys _ dormant keys

_

When ref count hits 0, key moves back to sketch, min/max with current entry

[Hwang B Conway Garcia-Alvarado Johnson Szekerez Yuan]

Experimental Results

Write-intensive workload, YCSB

In-memory CC
mechanisms, run

with on-disk
database b ‘

e 8 o * e
9 Variants of our
= approach
: .

0 I ! !

0 10 20
Goodput (KTPS)

[Hwang B Conway Garcia-Alvarado Johnson Szekerez Yuan]

In This Talk

Serializable Serializable
transactions transactions

Storage

Network

Serializable Serializable
transactions transactions

%istributed Transactional Systems %"'DiSk Transactional Systems
Impossibility Result Approximate Timestamping

Concluding Thoughts

e Faster |/Os are changing how concurrency should be used in large systems
 Showed impossibility in distributed concurrent transactions;

« What are good algorithms that optimize both parallelism and
network communication as much as possible?

* Only considered transactional systems;

« How do fast I/Os affect other problems in concurrent computing?

Thank you!

