
When is Recoverable Consensus
Harder Than Consensus?

Carole Delporte-Gallet IRIF, Université Paris Cité France
Panagiota Fatourou FORTH ICS & University of Crete Greece
Hugues Fauconnier IRIF, Université Paris Cité France
Eric Ruppert York University Canada

June 21, 2024
[Paper appeared at PODC 2022]

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Context

processes

shared memory
with objects of
various types

op response

Classical shared memory

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Context

processes

shared memory
with objects of
various types

op response

Classical shared memory
Wait-free algorithms

asynchronous

Permanent crash failures

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Context

op

Crash-recovery failures

Recoverable algorithms

(including programme counter)

Non-volatile shared memory

-erase local memory of process

response

processes

shared memory
with objects of
various types

op response

Classical shared memory
Wait-free algorithms

asynchronous

Permanent crash failures

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Context

? Algorithm A′Algorithm A

op

Crash-recovery failures

Recoverable algorithms

(including programme counter)

Non-volatile shared memory

-erase local memory of process

response

processes

shared memory
with objects of
various types

op response

Classical shared memory
Wait-free algorithms

asynchronous

Permanent crash failures

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Recoverable

Consensus

Consensus in context of crash-recovery failures

Recoverable

Consensus Problem

(RC) [Golab SPAA 2020]

Each process has an input value and must output a value.
Each output is the input of some process
No 2 outputs differ
If a process takes enough steps without crashing,
it outputs a value

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Recoverable Consensus

Consensus in context of crash-recovery failures

Recoverable Consensus Problem (RC) [Golab SPAA 2020]
Each process has an input value and must output a value.

Each output is the input of some process
No 2 outputs differ (including 2 outputs of 1 process)
If a process takes enough steps between crashes,
it outputs a value

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Recoverable

Consensus Hierarchy

C#(T) = consensus number of type T
maximum number of processes that can solve wait-free consensus
using objects of type T and registers
tolerating permanent crashes

RC#(T) = recoverable consensus number of type T
maximum number of processes that can solve recoverable consensus
using objects of type T and registers
tolerating crash-recovery failures

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Recoverable Consensus Hierarchy

C#(T) = consensus number of type T
maximum number of processes that can solve wait-free consensus
using objects of type T and registers
tolerating permanent crashes

RC#(T) = recoverable consensus number of type T
maximum number of processes that can solve recoverable consensus
using objects of type T and registers
tolerating crash-recovery failures

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Significance of

Recoverable

Consensus

Consensus numbers tell us about wait-free implementations
[Herlihy 1991]

Universality
C#(T) ≥ n⇒ T implements every object for n processes

Non-implementability
C#(T) < C#(T ′) = n
⇒ T cannot implement T ′ for n processes.

Analogous results for RC#(T).
[Berryhill, Golab, Tripunitara OPODIS 2015; this work]

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Significance of Recoverable Consensus

Consensus numbers tell us about wait-free implementations
[Herlihy 1991]

Universality
C#(T) ≥ n⇒ T implements every object for n processes

Non-implementability
C#(T) < C#(T ′) = n
⇒ T cannot implement T ′ for n processes.

Analogous results for RC#(T).
[Berryhill, Golab, Tripunitara OPODIS 2015; this work]

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Key Question

RC#(T) ≤ C#(T)

Any RC algorithm also solves consensus.
So RC is at least as hard as consensus.

Question
Is RC (much) harder than consensus?
Can RC#(T) be (much) smaller than C#(T)?

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Key Question

RC#(T) ≤ C#(T)

Any RC algorithm also solves consensus.
So RC is at least as hard as consensus.

Question
Is RC (much) harder than consensus?
Can RC#(T) be (much) smaller than C#(T)?

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Key Question

RC#(T) ≤ C#(T)

Any RC algorithm also solves consensus.
So RC is at least as hard as consensus.

Question
Is RC (much) harder than consensus?
Can RC#(T) be (much) smaller than C#(T)?

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Previous

and New

Results

System-wide crash-recovery failures
RC#(T) = 2⇔ C#(T) = 2. [Golab 2020]

RC#(T) = C#(T)

Independent crash-recovery failures:
With known bound on number of failures:
RC#(T) = C#(T). [Golab 2020]
Necessary condition for RC#(T) ≥ 2. [Golab 2020]

We characterize readable types with RC#(T) = n for all n.
[Ovens Tue] completed proof that characterization is exact.

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Previous

and New

Results

System-wide crash-recovery failures
RC#(T) = 2⇔ C#(T) = 2. [Golab 2020]

RC#(T) = C#(T)

Independent crash-recovery failures:
With known bound on number of failures:
RC#(T) = C#(T). [Golab 2020]
Necessary condition for RC#(T) ≥ 2. [Golab 2020]

We characterize readable types with RC#(T) = n for all n.
[Ovens Tue] completed proof that characterization is exact.

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Previous

and New

Results

System-wide crash-recovery failures
RC#(T) = 2⇔ C#(T) = 2. [Golab 2020]

RC#(T) = C#(T)

Independent crash-recovery failures:
With known bound on number of failures:
RC#(T) = C#(T). [Golab 2020]
Necessary condition for RC#(T) ≥ 2. [Golab 2020]

We characterize readable types with RC#(T) = n for all n.
[Ovens Tue] completed proof that characterization is exact.

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Previous and New Results

System-wide crash-recovery failures
RC#(T) = 2⇔ C#(T) = 2. [Golab 2020]
RC#(T) = C#(T)

Independent crash-recovery failures:
With known bound on number of failures:
RC#(T) = C#(T). [Golab 2020]
Necessary condition for RC#(T) ≥ 2. [Golab 2020]

We characterize readable types with RC#(T) = n for all n.
[Ovens Tue] completed proof that characterization is exact.

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Previous and New Results

System-wide crash-recovery failures
RC#(T) = 2⇔ C#(T) = 2. [Golab 2020]
RC#(T) = C#(T)

Independent crash-recovery failures:
With known bound on number of failures:
RC#(T) = C#(T). [Golab 2020]
Necessary condition for RC#(T) ≥ 2. [Golab 2020]
We characterize readable types with RC#(T) = n for all n.

[Ovens Tue] completed proof that characterization is exact.

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Previous and New Results

System-wide crash-recovery failures
RC#(T) = 2⇔ C#(T) = 2. [Golab 2020]
RC#(T) = C#(T)

Independent crash-recovery failures:
With known bound on number of failures:
RC#(T) = C#(T). [Golab 2020]
Necessary condition for RC#(T) ≥ 2. [Golab 2020]
We characterize readable types with RC#(T) = n for all n.
[Ovens Tue] completed proof that characterization is exact.

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Main Results

Focus on readable objects, independent failure model.

We define n-recording property of shared object types.

n-proc RC solvable

(n − 1)-recording

⇓

⇓

n-recording

Corollary
C#(T)− 2 ≤ RC#(T) ≤ C#(T)

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Main Results

Focus on readable objects, independent failure model.

We define n-recording property of shared object types.

(n − 1)-proc RC solvable
⇓

(n − 2)-recording
⇓

(n − 2)-proc RC solvable

⇓

n-proc RC solvable

(n − 1)-recording

⇓

⇓

n-recording

Corollary
C#(T)− 2 ≤ RC#(T) ≤ C#(T)

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Main Results

Focus on readable objects, independent failure model.

We define n-recording property of shared object types.

n-discerning6⇐

⇒ n-process consensus solvable

⇐

m [Ruppert PODC 1997]

(n − 1)-proc RC solvable
⇓

(n − 2)-recording
⇓

(n − 2)-proc RC solvable

⇓

n-proc RC solvable

(n − 1)-recording

⇓

⇓

n-recording

Corollary
C#(T)− 2 ≤ RC#(T) ≤ C#(T)

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Main Results

Focus on readable objects, independent failure model.

We define n-recording property of shared object types.

n-discerning6⇐

⇒ n-process consensus solvable

⇐

m [Ruppert PODC 1997]

(n − 1)-proc RC solvable
⇓

(n − 2)-recording
⇓

(n − 2)-proc RC solvable

⇓

n-proc RC solvable

(n − 1)-recording

⇓

⇓

n-recording

Corollary
C#(T)− 2 ≤ RC#(T) ≤ C#(T)

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Main Results

Focus on readable objects, independent failure model.

We define n-recording property of shared object types.

⇑ [Ovens Tue]

⇑ [Ovens Tue]

⇑ [Ovens Tue]

n-discerning6⇐

⇒ n-process consensus solvable

⇐

m [Ruppert PODC 1997]

(n − 2)-proc RC solvable

⇓
(n − 1)-proc RC solvable

⇓
(n − 2)-recording

⇓

n-proc RC solvable

n-recording
⇓

(n − 1)-recording
⇓

Corollary
C#(T)− 2 ≤ RC#(T) ≤ C#(T)

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

n-recording Property: First Attempt

Pick a starting state q0.
Divide n processes into two teams Red and Blue.
Assign an operation opi to each process pi .

Look at states reached from q0 by permutations of op1, . . . ,opn.

Example: 3 processes p1,p2,p3.

q0

op3op1op3 op2op1

Red = {p1,p2}
Blue = {p3} op1

op2

op3

op2

State should record which team did the first operation after q0.
Red states are disjoint from blue states
q0 is neither red nor blue

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

n-recording Property: First Attempt

Pick a starting state q0.
Divide n processes into two teams Red and Blue.
Assign an operation opi to each process pi .

Look at states reached from q0 by permutations of op1, . . . ,opn.

Example: 3 processes p1,p2,p3.

q0

op3op1op3 op2op1

Red = {p1,p2}
Blue = {p3} op1

op2

op3

op2

State should record which team did the first operation after q0.
Red states are disjoint from blue states
q0 is neither red nor blue

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Sufficiency of n-recording Property

Team RC problem
Same as RC with constraint: each team gets a common input

Theorem
An n-recording type T can solve n-process team RC.

Proof.
Use object O of type T (initially q0) and one register per team

Decide(v)
write v into my team’s register
if O’s state is q0 then perform opi on O
read O and determine which team accessed O first
output value from that team’s register

If red process accesses O first, state stays red forever.
If blue process accesses O first, state stays blue forever.

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Sufficiency of n-recording Property

Team RC problem
Same as RC with constraint: each team gets a common input

Theorem
An n-recording type T can solve n-process team RC.

Proof.
Use object O of type T (initially q0) and one register per team

Decide(v)
write v into my team’s register
if O’s state is q0 then perform opi on O
read O and determine which team accessed O first
output value from that team’s register

If red process accesses O first, state stays red forever.
If blue process accesses O first, state stays blue forever.

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Sufficiency of n-recording Property

Team RC problem
Same as RC with constraint: each team gets a common input

Theorem
An n-recording type T can solve n-process team RC.

Proof.
Use object O of type T (initially q0) and one register per team

Decide(v)
write v into my team’s register
if O’s state is q0 then perform opi on O
read O and determine which team accessed O first
output value from that team’s register

If red process accesses O first, state stays red forever.
If blue process accesses O first, state stays blue forever.

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Sufficiency: Solving RC using team RC

4

4
4

4

Algorithm

Team
RC

3

4

4

3
RC
Algorithm

RC
Algorithm

3

2

7

4

pn

pk+1

pk

p1

Solve smaller RC instances recursively.
→ Yields a tournament algorithm

[Neiger 1995, Ruppert 1997]

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Sufficiency: Solving RC using team RC

4

4
4

4

Algorithm

Team
RC

3

4

4

3
RC
Algorithm

RC
Algorithm

3

2

7

4

pn

pk+1

pk

p1

Solve smaller RC instances recursively.
→ Yields a tournament algorithm

[Neiger 1995, Ruppert 1997]

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Refining the Condition

Example: 3 processes p1,p2,p3.

q0

op3op1op3 op2op1

Red = {p1,p2}
Blue = {p3} op1

op2

op3

op2

Red states are disjoint from blue states
q0 is neither red nor blue
q0 can be red if there is only one blue process
q0 can be blue if there is only one red process

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Refining the Condition

Example: 3 processes p1,p2,p3.

op2

op2

op3

q0

op3op1op3 op2op1

Red = {p1,p2}
Blue = {p3} op1

q0

Red states are disjoint from blue states
q0 is neither red nor blue
q0 can be red if there is only one blue process
q0 can be blue if there is only one red process

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Refining the Condition

Example: 3 processes p1,p2,p3.

op2

op2

op3

q0

op3op1op3 op2op1

Red = {p1,p2}
Blue = {p3} op1

q0

Red states are disjoint from blue states
q0 is neither red nor blue
q0 can be red if there is only one blue process
q0 can be blue if there is only one red process

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Modified Definition Still Sufficient for Team RC

op2

op2

op3

q0

op3op1op3 op2op1

Red = {p1,p2}
Blue = {p3} op1

q0

Key idea to modify team RC algorithm if q0 is red:
p3 performs op3 on O only if
p3 sees state is q0 and no red process has woken up.

⇒ Ensures that if state of O returns to q0, it remains red forever.

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Sufficiency

Theorem (Sufficient Condition)
T is n-recording⇒ RC#(T) ≥ n

Proof Sketch
Build team RC algorithm using n-recording object.
Use team RC in tournament to solve RC.

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Sufficiency

Theorem (Sufficient Condition)
T is n-recording⇒ RC#(T) ≥ n

Proof Sketch
Build team RC algorithm using n-recording object.
Use team RC in tournament to solve RC.

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Necessity

Theorem (Necessary Condition)
T is (n − 1)-recording⇐ RC#(T) ≥ n

Ideas for proof
Valency argument
Critical configuration used to define q0, op1, . . . ,opn, teams

Challenge: Must construct runs that belong to this set.
Solution: “Extra process” takes steps to enable crashes.

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Necessity

Theorem (Necessary Condition)
T is (n − 1)-recording⇐ RC#(T) ≥ n

Ideas for proof
Valency argument
Critical configuration used to define q0, op1, . . . ,opn, teams

bivalent

p1

1- 1- 0-valent

p4p3p2

0-

Challenge: Must construct runs that belong to this set.
Solution: “Extra process” takes steps to enable crashes.

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Necessity

Theorem (Necessary Condition)
T is (n − 1)-recording⇐ RC#(T) ≥ n

Ideas for proof
Valency argument
Critical configuration used to define q0, op1, . . . ,opn, teams

satisfy definition
Show that these choices

q0

op1 op2 op3

0- 0-valent1-1-

op4

bivalent

Challenge: Must construct runs that belong to this set.
Solution: “Extra process” takes steps to enable crashes.

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Necessity

Theorem (Necessary Condition)
T is (n − 1)-recording⇐ RC#(T) ≥ n

Ideas for proof
Valency argument
Critical configuration used to define q0, op1, . . . ,opn, teams
Challenge: Not all executions produce output.
Solution: Use restricted set of runs:

Only p1 can crash.
crashes by p1 ≤ # total steps by p2, . . . ,pn.

Ensures every run produces output.

Challenge: Must construct runs that belong to this set.
Solution: “Extra process” takes steps to enable crashes.

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Necessity

Theorem (Necessary Condition)
T is (n − 1)-recording⇐ RC#(T) ≥ n

Ideas for proof
Valency argument
Critical configuration used to define q0, op1, . . . ,opn, teams
Challenge: Not all executions produce output.
Solution: Use restricted set of runs:

Only p1 can crash.
crashes by p1 ≤ # total steps by p2, . . . ,pn.

Ensures every run produces output.
Challenge: Must construct runs that belong to this set.
Solution: “Extra process” takes steps to enable crashes.

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Main Results (Readable Types, Indep. Failures)

⇑ [Ovens Tue]

⇑ [Ovens Tue]

⇑ [Ovens Tue]

n-discerning6⇐

⇒ n-process consensus solvable

⇐

m [Ruppert PODC 1997]

(n − 2)-proc RC solvable

⇓
(n − 1)-proc RC solvable

⇓
(n − 2)-recording

⇓

n-proc RC solvable

n-recording
⇓

(n − 1)-recording
⇓

Corollary
C#(T)− 2 ≤ RC#(T) ≤ C#(T)

Examples
Sometimes RC#(T) = C#(T) and
sometimes RC#(T) < C#(T).

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Bonus Result: Robustness

Theorem
If RC is solvable using several readable types together,
then RC is solvable using one of those types.

RC#(T1, . . . ,Tk) ≤ max(RC#(T1), . . . ,RC#(Tk)) + 1

Update [Ovens Tue]:
RC#(T1, . . . ,Tk) = max(RC#(T1), . . . ,RC#(Tk))

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Bonus Result: Robustness

Theorem
If RC is solvable using several readable types together,
then RC is solvable using one of those types.

RC#(T1, . . . ,Tk) ≤ max(RC#(T1), . . . ,RC#(Tk)) + 1

Update [Ovens Tue]:
RC#(T1, . . . ,Tk) = max(RC#(T1), . . . ,RC#(Tk))

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Bonus Result: Robustness

Theorem
If RC is solvable using several readable types together,
then RC is solvable using one of those types.

RC#(T1, . . . ,Tk) ≤ max(RC#(T1), . . . ,RC#(Tk)) + 1

Update [Ovens Tue]:
RC#(T1, . . . ,Tk) = max(RC#(T1), . . . ,RC#(Tk))

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Old Research Directions

Is rcons(T) = cons(T)− 2 for some readable type T ?

Yes. [Ovens Tue]

Is rcons(T) << cons(T) for some non-readable type T ?

Yes. [Ovens Tue]

Close gap between necessary and sufficient condition.

Done. [Ovens Tue]

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

Old Research Directions

Is rcons(T) = cons(T)− 2 for some readable type T ?
Yes. [Ovens Tue]
Is rcons(T) << cons(T) for some non-readable type T ?
Yes. [Ovens Tue]
Close gap between necessary and sufficient condition.
Done. [Ovens Tue]

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

New Research Directions

Understand what makes recoverable consensus harder
when using non-readable types.
Consider other agreement problems in recoverable setting.

approximate agreement, set agreement, ...

Efficient algorithms for RC and recoverable
implementations of data structures

Delporte-Gallet, Fatourou, Fauconnier, Ruppert When is Recoverable Consensus Harder Than Consensus?

