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Recoverable

Consensus

Consensus in context of crash-recovery failures

Recoverable

Consensus Problem

(RC) [Golab SPAA 2020]

Each process has an input value and must output a value.
Each output is the input of some process
No 2 outputs differ
If a process takes enough steps without crashing,
it outputs a value
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Recoverable Consensus

Consensus in context of crash-recovery failures

Recoverable Consensus Problem (RC) [Golab SPAA 2020]
Each process has an input value and must output a value.

Each output is the input of some process
No 2 outputs differ (including 2 outputs of 1 process)
If a process takes enough steps between crashes,
it outputs a value
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Recoverable

Consensus Hierarchy

C#(T ) = consensus number of type T
maximum number of processes that can solve wait-free consensus
using objects of type T and registers
tolerating permanent crashes

RC#(T ) = recoverable consensus number of type T
maximum number of processes that can solve recoverable consensus
using objects of type T and registers
tolerating crash-recovery failures
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Significance of

Recoverable

Consensus

Consensus numbers tell us about wait-free implementations
[Herlihy 1991]

Universality
C#(T ) ≥ n⇒ T implements every object for n processes

Non-implementability
C#(T ) < C#(T ′) = n
⇒ T cannot implement T ′ for n processes.

Analogous results for RC#(T ).
[Berryhill, Golab, Tripunitara OPODIS 2015; this work]
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Key Question

RC#(T ) ≤ C#(T )

Any RC algorithm also solves consensus.
So RC is at least as hard as consensus.

Question
Is RC (much) harder than consensus?
Can RC#(T ) be (much) smaller than C#(T )?
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Previous

and New

Results

System-wide crash-recovery failures
RC#(T ) = 2⇔ C#(T ) = 2. [Golab 2020]

RC#(T ) = C#(T )

Independent crash-recovery failures:
With known bound on number of failures:
RC#(T ) = C#(T ). [Golab 2020]
Necessary condition for RC#(T ) ≥ 2. [Golab 2020]

We characterize readable types with RC#(T ) = n for all n.
[Ovens Tue] completed proof that characterization is exact.
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Main Results

Focus on readable objects, independent failure model.

We define n-recording property of shared object types.

n-proc RC solvable

(n − 1)-recording

⇓

⇓

n-recording

Corollary
C#(T )− 2 ≤ RC#(T ) ≤ C#(T )
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n-recording Property: First Attempt

Pick a starting state q0.
Divide n processes into two teams Red and Blue.
Assign an operation opi to each process pi .

Look at states reached from q0 by permutations of op1, . . . ,opn.

Example: 3 processes p1,p2,p3.

q0

op3op1op3 op2op1

Red = {p1,p2}
Blue = {p3} op1

op2

op3

op2

State should record which team did the first operation after q0.
Red states are disjoint from blue states
q0 is neither red nor blue
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Sufficiency of n-recording Property

Team RC problem
Same as RC with constraint: each team gets a common input

Theorem
An n-recording type T can solve n-process team RC.

Proof.
Use object O of type T (initially q0) and one register per team

Decide(v )
write v into my team’s register
if O’s state is q0 then perform opi on O
read O and determine which team accessed O first
output value from that team’s register

If red process accesses O first, state stays red forever.
If blue process accesses O first, state stays blue forever.
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Sufficiency: Solving RC using team RC

4

4
4

4

Algorithm

Team
RC

3

4

4

3
RC
Algorithm

RC
Algorithm

3

2

7

4

pn

pk+1

pk

p1

Solve smaller RC instances recursively.
→ Yields a tournament algorithm

[Neiger 1995, Ruppert 1997]
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Refining the Condition

Example: 3 processes p1,p2,p3.

q0

op3op1op3 op2op1

Red = {p1,p2}
Blue = {p3} op1

op2

op3

op2

Red states are disjoint from blue states
q0 is neither red nor blue
q0 can be red if there is only one blue process
q0 can be blue if there is only one red process
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Modified Definition Still Sufficient for Team RC

op2

op2

op3

q0

op3op1op3 op2op1

Red = {p1,p2}
Blue = {p3} op1

q0

Key idea to modify team RC algorithm if q0 is red:
p3 performs op3 on O only if
p3 sees state is q0 and no red process has woken up.

⇒ Ensures that if state of O returns to q0, it remains red forever.
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Sufficiency

Theorem (Sufficient Condition)
T is n-recording⇒ RC#(T ) ≥ n

Proof Sketch
Build team RC algorithm using n-recording object.
Use team RC in tournament to solve RC.
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Necessity

Theorem (Necessary Condition)
T is (n − 1)-recording⇐ RC#(T ) ≥ n

Ideas for proof
Valency argument
Critical configuration used to define q0, op1, . . . ,opn, teams

Challenge: Must construct runs that belong to this set.
Solution: “Extra process” takes steps to enable crashes.
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Main Results (Readable Types, Indep. Failures)

⇑ [Ovens Tue]

⇑ [Ovens Tue]

⇑ [Ovens Tue]

n-discerning6⇐

⇒ n-process consensus solvable

⇐

m [Ruppert PODC 1997]

(n − 2)-proc RC solvable

⇓
(n − 1)-proc RC solvable

⇓
(n − 2)-recording

⇓

n-proc RC solvable

n-recording
⇓

(n − 1)-recording
⇓

Corollary
C#(T )− 2 ≤ RC#(T ) ≤ C#(T )

Examples
Sometimes RC#(T ) = C#(T ) and
sometimes RC#(T ) < C#(T ).
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Bonus Result: Robustness

Theorem
If RC is solvable using several readable types together,
then RC is solvable using one of those types.

RC#(T1, . . . ,Tk ) ≤ max(RC#(T1), . . . ,RC#(Tk )) + 1

Update [Ovens Tue]:
RC#(T1, . . . ,Tk ) = max(RC#(T1), . . . ,RC#(Tk ))
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Old Research Directions

Is rcons(T ) = cons(T )− 2 for some readable type T ?

Yes. [Ovens Tue]

Is rcons(T ) << cons(T ) for some non-readable type T ?

Yes. [Ovens Tue]

Close gap between necessary and sufficient condition.

Done. [Ovens Tue]
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New Research Directions

Understand what makes recoverable consensus harder
when using non-readable types.
Consider other agreement problems in recoverable setting.

approximate agreement, set agreement, ...

Efficient algorithms for RC and recoverable
implementations of data structures
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