When is Recoverable Consensus Harder Than Consensus?

Carole Delporte-Gallet Panagiota Fatourou Hugues Fauconnier Eric Ruppert IRIF, Université Paris Cité FORTH ICS & University of Crete IRIF, Université Paris Cité York University France Greece France Canada

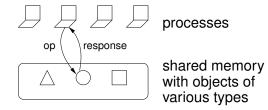
June 21, 2024 [Paper appeared at PODC 2022]

Delporte-Gallet, Fatourou, Fauconnier, Ruppert

When is Recoverable Consensus Harder Than Consensus?

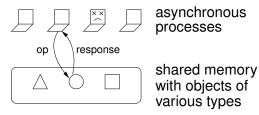
A (10) A (10) A (10)

Classical shared memory



Delporte-Gallet, Fatourou, Fauconnier, Ruppert

Classical shared memory Wait-free algorithms



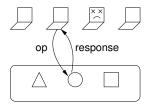
Permanent crash failures

Delporte-Gallet, Fatourou, Fauconnier, Ruppert

Classical shared memory Wait-free algorithms

asynchronous processes

shared memory with objects of various types Non-volatile shared memory Recoverable algorithms



Permanent crash failures

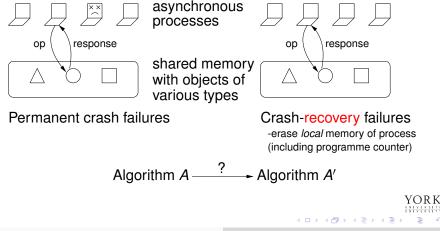
op response

Crash-recovery failures -erase *local* memory of process (including programme counter)

Delporte-Gallet, Fatourou, Fauconnier, Ruppert

Classical shared memory Wait-free algorithms

Non-volatile shared memory Recoverable algorithms



Delporte-Gallet, Fatourou, Fauconnier, Ruppert

Consensus

Consensus Problem

Each process has an input value and must output a value.

- Each output is the input of some process
- No 2 outputs differ
- If a process takes enough steps without crashing, it outputs a value

A (10) < A (10) < A (10)</p>

Consensus in context of crash-recovery failures

Recoverable Consensus Problem (RC) [Golab SPAA 2020]

Each process has an input value and must output a value.

- Each output is the input of some process
- No 2 outputs differ (including 2 outputs of 1 process)
- If a process takes enough steps between crashes, it outputs a value

< 同 > < 回 > < 回

C#(T) = consensus number of type T

maximum number of processes that can solve wait-free consensus using objects of type T and registers tolerating permanent crashes

\mathbf{RC} #(T) = recoverable consensus number of type T

maximum number of processes that can solve recoverable consensus using objects of type T and registers tolerating crash-recovery failures

Delporte-Gallet, Fatourou, Fauconnier, Ruppert

◆ □ ▶ < @ ▶ < 클 ▶ < 클 ▶ = 클 → ○ </p>
When is Recoverable Consensus Harder Than Consensus?

C#(T) = consensus number of type T

maximum number of processes that can solve wait-free consensus using objects of type T and registers tolerating permanent crashes

RC#(T) = recoverable consensus number of type T

maximum number of processes that can solve recoverable consensus using objects of type T and registers tolerating crash-recovery failures

Delporte-Gallet, Fatourou, Fauconnier, Ruppert

Consensus numbers tell us about wait-free implementations [Herlihy 1991]

Universality

 $C\#(T) \ge n \Rightarrow T$ implements *every* object for *n* processes

Non-implementability

C #(T) < C #(T') = n $\Rightarrow T$ cannot implement T' for n processes.

Analogous results for *RC*#(*T*). [Berryhill, Golab, Tripunitara OPODIS 2015; this work]

Delporte-Gallet, Fatourou, Fauconnier, Ruppert

Consensus numbers tell us about wait-free implementations [Herlihy 1991]

Universality

 $C\#(T) \ge n \Rightarrow T$ implements *every* object for *n* processes

Non-implementability

C #(T) < C #(T') = n $\Rightarrow T$ cannot implement T' for n processes.

Analogous results for RC#(T). [Berryhill, Golab, Tripunitara OPODIS 2015; this work]

$RC\#(T) \leq C\#(T)$

Any RC algorithm also solves consensus. So RC is at least as hard as consensus.

Question

Is RC (much) harder than consensus? Can RC#(T) be (much) smaller than C#(T)?

Delporte-Gallet, Fatourou, Fauconnier, Ruppert

◆ □ ▶ < @ ▶ < 클 ▶ < 클 ▶ = 클 → ○ </p>
When is Recoverable Consensus Harder Than Consensus?

$RC\#(T) \leq C\#(T)$

Any RC algorithm also solves consensus. So RC is at least as hard as consensus.

Question

Is RC (much) harder than consensus?

Can RC#(T) be (much) smaller than C#(T)?

Delporte-Gallet, Fatourou, Fauconnier, Ruppert

$RC\#(T) \leq C\#(T)$

Any RC algorithm also solves consensus. So RC is at least as hard as consensus.

Question

Is RC (much) harder than consensus? Can RC#(T) be (much) smaller than C#(T)?

Delporte-Gallet, Fatourou, Fauconnier, Ruppert

◆ □ ▶ < @ ▶ < 클 ▶ < 클 ▶ = 클 → ○ </p>
When is Recoverable Consensus Harder Than Consensus?

Previous

System-wide crash-recovery failures

$$RC\#(T) = 2 \Leftrightarrow C\#(T) = 2.$$

[Golab 2020]

Delporte-Gallet, Fatourou, Fauconnier, Ruppert

4 □ ▶ 4 @ ▶ 4 ≧ ▶ 4 ≧ ▶ 3 ≧ ♥ ○ Q ○
When is Recoverable Consensus Harder Than Consensus?

Previous

System-wide crash-recovery failures

$$RC\#(T) = 2 \Leftrightarrow C\#(T) = 2.$$

Independent crash-recovery failures:

• With *known bound* on number of failures: RC#(T) = C#(T).

• Necessary condition for $RC\#(T) \ge 2$.

[Golab 2020]

[Golab 2020]

Golab 2020]

Delporte-Gallet, Fatourou, Fauconnier, Ruppert

◆ロトイラトイラトイラト ラーラへの When is Recoverable Consensus Harder Than Consensus?

$$RC\#(T) = 2 \Leftrightarrow C\#(T) = 2.$$

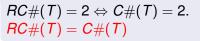
[Golab 2020]

Independent crash-recovery failures:

- With *known bound* on number of failures: RC#(T) = C#(T).
- Necessary condition for $RC\#(T) \ge 2$.

[Golab 2020] [Golab 2020]

Delporte-Gallet, Fatourou, Fauconnier, Ruppert



[Golab 2020]

Independent crash-recovery failures:

- With *known bound* on number of failures: RC#(T) = C#(T).
- Necessary condition for $RC\#(T) \ge 2$.

[Golab 2020] [Golab 2020]

Delporte-Gallet, Fatourou, Fauconnier, Ruppert

 $RC\#(T) = 2 \Leftrightarrow C\#(T) = 2.$ RC#(T) = C#(T) [Golab 2020]

Independent crash-recovery failures:

- With *known bound* on number of failures: RC#(T) = C#(T). [Golab 2020]
- Necessary condition for $RC\#(T) \ge 2$. [Golab 2020] We characterize readable types with RC#(T) = n for all n.

Delporte-Gallet, Fatourou, Fauconnier, Ruppert

 $RC\#(T) = 2 \Leftrightarrow C\#(T) = 2.$ RC#(T) = C#(T) [Golab 2020]

Independent crash-recovery failures:

- With *known bound* on number of failures: RC#(T) = C#(T). [Golab 2020]
- Necessary condition for $RC\#(T) \ge 2$. [Golab 2020] We characterize readable types with RC#(T) = n for all *n*. [Ovens Tue] completed proof that characterization is exact.


```
Focus on readable objects, independent failure model.
We define n-recording property of shared object types.
n-recording
\downarrow
n-proc RC solvable
\downarrow
(n-1)-recording
```


Focus on readable objects, independent failure model. We define *n*-recording property of shared object types. *n*-recording n-proc RC solvable $(n-1)^{v}$ -recording (n-1)-proc RC solvable (n-2)-recording (n-2)-proc RC solvable

Focus on readable objects, independent failure model. We define *n*-recording property of shared object types. *n*-recording *n*-proc RC solvable \Rightarrow n-process consensus solvable [Ruppert PODC 1997] (n-1)-recording \neq *n*-discerning (n-1)-proc RC solvable (n-2)-recording (n-2)-proc RC solvable

Focus on readable objects, independent failure model. We define *n*-recording property of shared object types. *n*-recording *n*-proc RC solvable \Rightarrow n-process consensus solvable [Ruppert PODC 1997] (n-1)-recording \neq *n*-discerning (n-1)-proc RC solvable (n-2)-recording (n-2)-proc RC solvable

Corollary

$$C\#(T)-2 \leq RC\#(T) \leq C\#(T)$$

Focus on readable objects, independent failure model. We define *n*-recording property of shared object types. *n*-recording \Downarrow \uparrow [Ovens Tue] *n*-proc RC solvable \Rightarrow n-process consensus solvable [Ruppert PODC 1997] (n-1)-recording \neq *n*-discerning \Downarrow \uparrow [Ovens Tue] (n-1)-proc RC solvable (n-2)-recording \Downarrow \Uparrow [Ovens Tue] (n-2)-proc RC solvable

Corollary

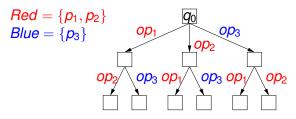
$$C\#(T)-2 \leq RC\#(T) \leq C\#(T)$$

n-recording Property: First Attempt

- Pick a starting state q₀.
- Divide *n* processes into two teams *Red* and *Blue*.
- Assign an operation *op_i* to each process *p_i*.

Look at states reached from q_0 by permutations of op_1, \ldots, op_n .

Example: 3 processes p_1, p_2, p_3 .



Delporte-Gallet, Fatourou, Fauconnier, Ruppert

When is Recoverable Consensus Harder Than Consensus?

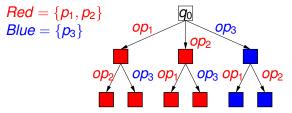
A (10) A (10) A (10)

n-recording Property: First Attempt

- Pick a starting state q₀.
- Divide *n* processes into two teams *Red* and *Blue*.
- Assign an operation *op_i* to each process *p_i*.

Look at states reached from q_0 by permutations of op_1, \ldots, op_n .

Example: 3 processes p_1, p_2, p_3 .



State should *record* which team did the *first* operation after q_0 .

- Red states are disjoint from blue states
- q₀ is neither red nor blue

Delporte-Gallet, Fatourou, Fauconnier, Ruppert

《 □ ▶ 《 @ ▶ 《 볼 ▶ 《 볼 ▶ 볼 ~) 옷 (? When is Recoverable Consensus Harder Than Consensus?

Sufficiency of *n*-recording Property

Team RC problem

Same as RC with constraint: each team gets a common input

Theorem

An n-recording type T can solve n-process team RC.

Proof.

Use object O of type T (initially q_0) and one register per team

Decide(v) write v into my team's register if O's state is q₀ then perform op_i on O read O and determine which team accessed O first output value from that team's register

If **red** process accesses *O* first, state stays **red** forever. If blue process accesses *O* first, state stays blue forever.

Delporte-Gallet, Fatourou, Fauconnier, Ruppert

Sufficiency of *n*-recording Property

Team RC problem

Same as RC with constraint: each team gets a common input

Theorem

An n-recording type T can solve n-process team RC.

Proof.

Use object O of type T (initially q_0) and one register per team

Decide(v) write v into my team's register if O's state is q₀ then perform op_i on O read O and determine which team accessed O first output value from that team's register

If **red** process accesses *O* first, state stays **red** forever. If blue process accesses *O* first, state stays blue forever.

Delporte-Gallet, Fatourou, Fauconnier, Ruppert

Sufficiency of *n*-recording Property

Team RC problem

Same as RC with constraint: each team gets a common input

Theorem

An n-recording type T can solve n-process team RC.

Proof.

Use object O of type T (initially q_0) and one register per team

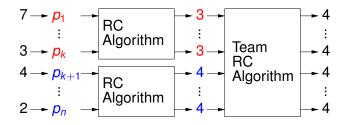
Decide(*v*) write *v* into my team's register if *O*'s state is *q*₀ then perform *op_i* on *O* read *O* and determine which team accessed *O* first output value from that team's register

If red process accesses O first, state stays red forever.

If blue process accesses O first, state stays blue forever.

Delporte-Gallet, Fatourou, Fauconnier, Ruppert

Sufficiency: Solving RC using team RC



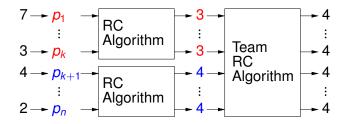
[Neiger 1995, Ruppert 1997]

Delporte-Gallet, Fatourou, Fauconnier, Ruppert

When is Recoverable Consensus Harder Than Consensus?

a = b a

Sufficiency: Solving RC using team RC

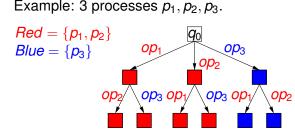


Solve smaller RC instances recursively.

 \rightarrow Yields a tournament algorithm

[Neiger 1995, Ruppert 1997]

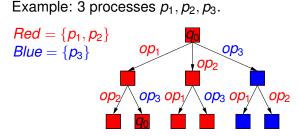
Refining the Condition



- Red states are disjoint from blue states
- q₀ is neither red nor blue
- q₀ can be red if there is only one blue process
- q₀ can be blue if there is only one red process

Delporte-Gallet, Fatourou, Fauconnier, Ruppert

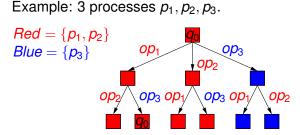
Refining the Condition



- Red states are disjoint from blue states
- q₀ is neither red nor blue
- q₀ can be red if there is only one blue process
- q₀ can be blue if there is only one red process

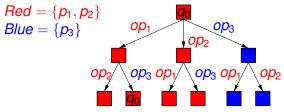
Delporte-Gallet, Fatourou, Fauconnier, Ruppert

Refining the Condition



- Red states are disjoint from blue states
- q₀ is neither red nor blue
- q₀ can be red if there is only one blue process
- q₀ can be blue if there is only one red process

Modified Definition Still Sufficient for Team RC



Key idea to modify team RC algorithm if q_0 is red: p_3 performs op_3 on O only if

 p_3 sees state is q_0 and no red process has woken up.

 \Rightarrow Ensures that if state of *O* returns to q_0 , it remains red forever.

Theorem (Sufficient Condition)

T is *n*-recording \Rightarrow *RC*#(*T*) \geq *n*

Proof Sketch

Build team RC algorithm using *n*-recording object. Use team RC in tournament to solve RC.

Delporte-Gallet, Fatourou, Fauconnier, Ruppert

《□▷
《□▷
《□▷
《□▷
《□▷
》
②
○
O
When is Recoverable Consensus Harder Than Consensus?

Theorem (Sufficient Condition)

T is *n*-recording \Rightarrow *RC*#(*T*) \geq *n*

Proof Sketch

Build team RC algorithm using *n*-recording object. Use team RC in tournament to solve RC.

Delporte-Gallet, Fatourou, Fauconnier, Ruppert

Theorem (Necessary Condition)

T is (n-1)-recording $\leftarrow RC\#(T) \ge n$

Delporte-Gallet, Fatourou, Fauconnier, Ruppert

Theorem (Necessary Condition)

T is (n-1)-recording $\leftarrow RC\#(T) \ge n$

Ideas for proof

- Valency argument
- Critical configuration used to define q_0, op_1, \dots, op_n , teams bivalent

$$p_1 \left(\begin{array}{c} p_2 \left(\begin{array}{c} p_3 \right) \\ p_4 \end{array} \right)$$

0- 1- 1- 0-valen

Delporte-Gallet, Fatourou, Fauconnier, Ruppert

《□▷
《□▷
《□▷
《□▷
《□▷
》
②
○
O
When is Recoverable Consensus Harder Than Consensus?

Theorem (Necessary Condition)

T is (n-1)-recording $\leftarrow RC\#(T) \ge n$

1- 0-valent

Ideas for proof

Valency argument

1-

0-

Critical configuration used to define q₀, op₁,..., op_n, teams
 q₀ bivalent

Show that these choices satisfy definition

Delporte-Gallet, Fatourou, Fauconnier, Ruppert

Theorem (Necessary Condition)

T is (n-1)-recording $\leftarrow RC\#(T) \ge n$

Ideas for proof

- Valency argument
- Critical configuration used to define q_0, op_1, \ldots, op_n , teams
- Challenge: Not all executions produce output. Solution: Use restricted set of runs:
 - Only *p*₁ can crash.
 - # crashes by $p_1 \leq$ # total steps by p_2, \ldots, p_n .

Ensures every run produces output.

《□▷
《□▷
《□▷
《□▷
《□▷
》
②
○
O
When is Recoverable Consensus Harder Than Consensus?

Theorem (Necessary Condition)

T is (n-1)-recording $\leftarrow RC\#(T) \ge n$

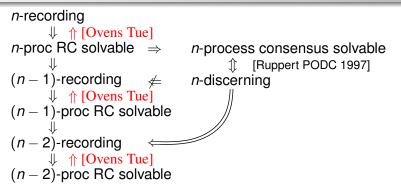
Ideas for proof

- Valency argument
- Critical configuration used to define q_0, op_1, \ldots, op_n , teams
- Challenge: Not all executions produce output. Solution: Use restricted set of runs:
 - Only p₁ can crash.
 - # crashes by $p_1 \leq$ # total steps by p_2, \ldots, p_n .

Ensures every run produces output.

 Challenge: Must construct runs that belong to this set. Solution: "Extra process" takes steps to enable crashes.

Main Results (Readable Types, Indep. Failures)



Corollary

$$C\#(T)-2 \leq RC\#(T) \leq C\#(T)$$

Examples

Sometimes RC#(T) = C#(T) and sometimes RC#(T) < C#(T).

Delporte-Gallet, Fatourou, Fauconnier, Ruppert

When is Recoverable Consensus Harder Than Consensus?

Theorem

If RC is solvable using several readable types together, then RC is solvable using one of those types.

 $RC\#(T_1,\ldots,T_k) \leq \max(RC\#(T_1),\ldots,RC\#(T_k)) + 1$

Update [Ovens Tue]: $RC\#(T_1,...,T_k) = \max(RC\#(T_1),...,RC\#(T_k))$

Delporte-Gallet, Fatourou, Fauconnier, Ruppert

Theorem

If RC is solvable using several readable types together, then RC is solvable using one of those types.

 $RC\#(T_1,\ldots,T_k) \leq \max(RC\#(T_1),\ldots,RC\#(T_k)) + 1$

Update [Ovens Tue]: $RC\#(T_1,...,T_k) = \max(RC\#(T_1),...,RC\#(T_k))$

Delporte-Gallet, Fatourou, Fauconnier, Ruppert

Theorem

If RC is solvable using several readable types together, then RC is solvable using one of those types.

$$RC\#(T_1,\ldots,T_k) \leq \max(RC\#(T_1),\ldots,RC\#(T_k)) + 1$$

Update [Ovens Tue]: $RC\#(T_1,...,T_k) = \max(RC\#(T_1),...,RC\#(T_k))$

Delporte-Gallet, Fatourou, Fauconnier, Ruppert

- Is rcons(T) = cons(T) 2 for some readable type T?
- Is rcons(T) << cons(T) for some non-readable type T?</p>
- Close gap between necessary and sufficient condition.

Delporte-Gallet, Fatourou, Fauconnier, Ruppert

Old Research Directions

- Is rcons(T) = cons(T) 2 for some readable type T?
 Yes. [Ovens Tue]
- Is rcons(T) << cons(T) for some non-readable type T?
 Yes. [Ovens Tue]
- Close gap between necessary and sufficient condition.
 Done. [Ovens Tue]

Delporte-Gallet, Fatourou, Fauconnier, Ruppert

- Understand what makes recoverable consensus harder when using non-readable types.
- Consider other agreement problems in recoverable setting. approximate agreement, set agreement, ...
- Efficient algorithms for RC and recoverable implementations of data structures

• Im • • m • • m