
The Persistence Bug: Dead or
Alive?

Erez Petrank
Andrew and Erna Viterbi Prof. of Computer Science

Persistence
• “Continuing to exist despite interference” Merriam-Webster

• Persistent memory allows continuing to compute after a crash

• If all “data” persists then we can simply continue computation

CPU
MemoryCache

Problem
• Some systems (ADR Optane) only guarantee memory persistence

• Other systems (extended ADR Optane) cover the cache as well (not
more)

CPU
MemoryCache

Programming for eADR?
• “Realize, however, that during the transition from ADR to eADR, there will be servers with only

ADR and servers that will have both. It is then the application’s responsibility to detect the
platform’s capabilities where it is running and implement the logic that avoids flushing only
when eADR is present. If you use any of the libraries from the Persistent Memory Development
Kit (PMDK), all this is already done for you.”

CPU
MemoryCache

https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html

Why Is It Hard
• Without cache persistence, need to persist “important” data.

• Persist: CLWB (flush), SFENCE (wait for it)

• Main issue: persisting is costly so use sparingly

• Is it enough to flush after each write?

Not so bad!
Not so correct!

Persist Every Write
Main issue: the persistence bug

Write x

Read x

y = f(x)

Write y

Persist y

Persist x

Timeline

Thread 1 Thread 2

The Persistence Bug
• Something that depends on x may persist before x does

• T2’s Read of x does not happen before
T1’s write of x
and y depends on x
and x may not persist before T2 writes y

• Defined in [Che et al., ASPLOS 22]

• PMRace tester

Write x

Read x

y = f(x)

Write y

Persist y

Persist x

Thread 1 Thread 2

The Persistence Bug
• Something that depends on x may persist before x does

• Solution: persist after reading

• Correct but expensive

• How do general transformations avoid this bug?

• NVTraverse [Friedman, Ben David, Wei,
Blelloch, Petrank]: carefully identify dangerous
reads and persist.

• Mirror: …

Write x

Read x

y = f(x)

Write y

Persist y

Persist x

Thread 1 Thread 2

Mirror
• Ideas:

• Always read persisted values

• Exploit DRAM

Friedman, Ramalhete, Petrank PLDI 21

Mirror: A transformation for Lock-Freedon

CPU &
Registers

High-Speed
Cache

Memory
(DRAM)

Optane
(NVRAM)

The Optane
Architectures

Mirror Idea

Main idea: avoid reading from NVRAM

Read only from DRAM, write to both DRAM and NVRAM

Note 1: reads are a lot more frequent than writes

Note 2: NVRAM reads are 3x DRAM reads

Implementation: keep a replica of data structure in DRAM (mirror)

Yields highly efficient durable data structures

Persistent replicaVolatile replica

• Data Structures: linked-list, hash-table, BST, skip-list
• Competitors:
•Original version (non-persistent)
• Izraelevitz construction (general) [IzraelevitzMendesScott ’16]
• NVTraverse (general) [FriedmanBenDavidWeiBlellochPetrank ’20]
• Link-Free & SOFT (hand tuned) [ZurielFriedmanSheffiCohenPetrank

’19]
• pmemkv key-value store (general) [Intel ’19]

• Platform - Intel Optane, Intel 6234 3.3GHz, 2 processors with 8 cores,
Ubuntu 18.04.1

12

Evaluation

Hash Throughput

‣ Varying threads
‣ Initial size: 8M keys
‣ 20% updates

Not Persistent!

Mirror with ADR and eADR
• eADR eliminates Mirror’s need to flush (visibility == persistence)

• But Mirror’s use of DRAM is useful for performance

• ADR requires Mirror’s flushes when writing to NVRAM

CPU
Memory

Cache

Back to the Persistence Bug
• How will the next commercial NVRAM look like?

• How will CXL deliver eADR?

• Both memory and processor to use “batteries”

• Why not “eeADR” to persist everything (including CPU)?

• Hardware support for persisting CPU info

• Other platforms?

CPU
Memory

Cache

Terminology & Challenges
• ADR, eADR, eeADR?

• Proposal: ‘memory persistence’, ‘cache persistence’, & ‘CPU persistence’

• Research: we have studied memory persistence extensively.

• Is CPU persistence as easy as it sounds for SW? How difficult is it for
HW?

• What are the good open questions for cache persistence?
(Detectability partially studied.)

CPU
Memory

Cache

Conclusion
• The persistence bug

• How two general transformations avoid it

• Research beyond Optane?

• Three futures: memory-, cache-, & CPU-persistence

• Mirror’s use of DRAM is beneficial to all

• Questions: what’s more likely? What should we pursue?

CPU
Memory

Cache

