
Who moved my cheese? 
How storage systems deal with changes in their media

Gala Yadgar



“Why is Hebrew written backwards?”

2



“Why is Hebrew written backwards?”

Codex Argenteus
(~500 AC)

Cuneiform tablet
(~2000 BC)

3



“Why is Hebrew written backwards?”

Codex Argenteus
(~500 AC)

Cuneiform tablet
(~2000 BC)

It’s the storage media!
4



Storage systems and their media

• Abstraction layers hide complexity and details

Filesystem

Block storage 
device

Block interface

POSIX interface

5



Storage systems and their media

• Abstraction layers hide complexity and details

• Add the new media as a direct replacement
• Backwards compatibility

• Little development effort

• Quick adoption

Filesystem

Block storage 
device

Block interface

POSIX interface

6



Storage systems and their media

• Abstraction layers hide complexity and details

• Add the new media as a direct replacement
• Backwards compatibility

• Little development effort

• Quick adoption

• It works! But…
• Performance not as expected

• Unpredictable user experience

• Notable examples from recent past
• HDD → RAID → SSD → NAS/cloud storage

Filesystem

Block storage 
device

Block interface

POSIX interface

7



This talk

• How the storage-systems community addresses NVM
Non-exhaustive, non-prioritized list of examples*

Grossly over-simplified

• Focus on insights and the adaptation process

• System model and characterization

• Unexpected bottlenecks

• Performance isolation / QoS

* Figures taken from respective cited papers and author presentations 8



What is NVM, exactly?

9



What is NVM, exactly?

• For many purposes, fast and non-volatile is NVM
• Write-ahead logging

• Metadata or index

10



What is NVM, exactly?

• For many purposes, fast and non-volatile is NVM
• Write-ahead logging

• Metadata or index

• For our purpose, byte-addresable and non-DRAM
11



What is NVM, exactly?

• Intel Optane 
persistent memory

• For our purpose, byte-addresable and non-DRAM

12



What is NVM, exactly?

• Intel Optane 
persistent memory

• For our purpose, byte-addresable and non-DRAM

• Samsung’s CMM-H 
(CXL Memory Module – Hybrid)

13

https://semiconductor.samsung.com/us/news-events/tech-blog/rethinking-storage-for-the-memory-centric-computing-era/


Characterization (Optane)

• Faster than HDD and SSD but slower than DRAM

• Does not behave like DRAM
• Random ≠ Sequential

Local
DRAM

Remote
DRAM

Optane

J. Izraelevitz et al. Basic Performance Measurements of the Intel Optane DC Persistent Memory Module, arXiv:1903.05714v3 2019

https://arxiv.org/abs/1903.05714


Characterization (Optane)

• Faster than HDD and SSD but slower than DRAM

• Does not behave like DRAM
• Random ≠ Sequential

• Reads ≠ Writes

• Small ≠ Large

• Much lower bandwidth

• (Much more interference)

J. Izraelevitz et al. Basic Performance Measurements of the Intel Optane DC Persistent Memory Module, arXiv:1903.05714v3 2019

Local DRAM Optane

https://arxiv.org/abs/1903.05714


Rethinking file-system indexing

• Bottleneck: tree-based inode index incurs high overhead with NVM
• Up to 63% of the time spend on FS operations (e.g., file append)

R. Li et al. ctFS: Replacing File Indexing with Hardware Memory Translation through Contiguous File Allocation for 
Persistent Memory, USENIX FAST 2022 16

https://www.usenix.org/conference/fast22/presentation/li


Rethinking file-system indexing

• Bottleneck: tree-based inode index incurs high overhead with NVM
• Up to 63% of the time spend on FS operations (e.g., file append)

• Insights: 
• Use hardware-based translation

• Don’t care about physical contiguity 

• Persist small updates quickly

R. Li et al. ctFS: Replacing File Indexing with Hardware Memory Translation through Contiguous File Allocation for 
Persistent Memory, USENIX FAST 2022 17

https://www.usenix.org/conference/fast22/presentation/li


Rethinking file-system indexing: ctFS
• Use hardware-based translation

• Don’t care about physical contiguity

inode only 
records start 
of segment

Kernel module 
populates DRAM 

page table

R. Li et al. ctFS: Replacing File Indexing with Hardware Memory Translation through Contiguous File Allocation for 
Persistent Memory, USENIX FAST 2022 18

https://www.usenix.org/conference/fast22/presentation/li


Rethinking file-system indexing: ctFS
• Use hardware-based translation

• Don’t care about physical contiguity

• Persist small updates quickly

inode only 
records start 
of segment

Kernel module 
populates DRAM 

page table

New syscall:
atomic pswap ()

Hierarchical 
partitions

R. Li et al. ctFS: Replacing File Indexing with Hardware Memory Translation through Contiguous File Allocation for 
Persistent Memory, USENIX FAST 2022 19

https://www.usenix.org/conference/fast22/presentation/li


Rethinking kernel-space vs. user-space

• Bottleneck: metadata handling in kernel space is inefficient

S. Zhong et al. MadFS: Per-File Virtualization for Userspace Persistent Memory Filesystems USENIX FAST 2023 20

https://www.usenix.org/conference/fast23/presentation/zhong


Rethinking kernel-space vs. user-space

• Bottleneck: metadata handling in kernel space is inefficient

• Insights: 
• Some metadata can be safely handled in user space

• Rethink data/metadata separation

S. Zhong et al. MadFS: Per-File Virtualization for Userspace Persistent Memory Filesystems USENIX FAST 2023 21

https://www.usenix.org/conference/fast23/presentation/zhong


Rethinking kernel-space vs. user-space: MadFS

• Some metadata can be safely handled in user space

• Rethink data/metadata separation

• Embedded metadata
• “Virtual” file block map and size

S. Zhong et al. MadFS: Per-File Virtualization for Userspace Persistent Memory Filesystems USENIX FAST 2023 22

https://www.usenix.org/conference/fast23/presentation/zhong


Rethinking kernel-space vs. user-space: MadFS

• Some metadata can be safely handled in user space

• Rethink data/metadata separation

• Embedded metadata
• “Virtual” file block map and size

• Kernel-managed metadata
• Logical-to-physical mapping 

• File permissions

• Directory structures

S. Zhong et al. MadFS: Per-File Virtualization for Userspace Persistent Memory Filesystems USENIX FAST 2023 23

https://www.usenix.org/conference/fast23/presentation/zhong


Rethinking shared caches

• DRAM: 
• More space allocation = higher hit rate = better performance

• Higher bandwidth = more usage = more interference

• Tenant A is too slow → throttle noisy neighbor B with max bandwidth

K. Wu at al. NyxCache: Flexible and Efficient Multi-tenant Persistent Memory Caching USENIX FAST 2022 24

https://www.usenix.org/conference/fast22/presentation/wu


Rethinking shared caches

• DRAM: 
• More space allocation = higher hit rate = better performance

• Higher bandwidth = more usage = more interference

• Tenant A is too slow → throttle noisy neighbor B with max bandwidth

• NVM:

K. Wu at al. NyxCache: Flexible and Efficient Multi-tenant Persistent Memory Caching USENIX FAST 2022

Writes interfere 
more than reads

Small requests 
interfere more 
than large ones

25

https://www.usenix.org/conference/fast22/presentation/wu


Rethinking shared caches: NyxCache

• Profile max performance of different access types

Max IOPS for random reads /writes

K. Wu at al. NyxCache: Flexible and Efficient Multi-tenant Persistent Memory Caching USENIX FAST 2022 26

https://www.usenix.org/conference/fast22/presentation/wu


Rethinking shared caches: NyxCache

• Profile max performance of different access types

• Monitor individual tenants and their interaction

Throttle B:
→ A unchanged…

Throttle C:
→ A improves!

Max IOPS for random reads /writes

K. Wu at al. NyxCache: Flexible and Efficient Multi-tenant Persistent Memory Caching USENIX FAST 2022 27

https://www.usenix.org/conference/fast22/presentation/wu


Rethinking shared caches: NyxCache

• Profile max performance of different access types

• Monitor individual tenants and their interaction

• Library throttles tenant using most resources / causing most interference

Throttle B:
→ A unchanged…

Throttle C:
→ A improves!

Max IOPS for random reads /writes

K. Wu at al. NyxCache: Flexible and Efficient Multi-tenant Persistent Memory Caching USENIX FAST 2022 28

https://www.usenix.org/conference/fast22/presentation/wu


Conclusions

Fine-grained 
performance modeling

New media 
available

Bottlenecks addressed 
by bypassing boundaries 

and hacking interfaces

Boundaries shifted,  
hardware support added

Legacy 
system

New 
legacy 
system

29



Conclusions

Fine-grained 
performance modeling

New media 
available

Bottlenecks addressed 
by bypassing boundaries 

and hacking interfaces

Boundaries shifted,  
hardware support added

Legacy 
system

New 
legacy 
system

30



Conclusions

• And what about our written language…?

Fine-grained 
performance modeling

New media 
available

Bottlenecks addressed 
by bypassing boundaries 

and hacking interfaces

Boundaries shifted,  
hardware support added

Legacy 
system

New 
legacy 
system

31



Conclusions

• And what about our written language…? 🙏4👂!

Fine-grained 
performance modeling

New media 
available

Bottlenecks addressed 
by bypassing boundaries 

and hacking interfaces

Boundaries shifted,  
hardware support added

Legacy 
system

New 
legacy 
system

32
?


