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The quick brown fox
jumps overthelazy dog.
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Storage systems and their media

e Abstraction layers hide complexity and details

POSIX interface

Filesystem
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* Abstraction layers hide complexity and details

* Add the new media as a direct replacement
e Backwards compatibility
* Little development effort POSIX interface
* Quick adoption

Filesystem
Block interface - _--_-_______ % _______
Block storage @
device o L i



Storage systems and their media

* Abstraction layers hide complexity and details
* Add the new media as a direct replacement

e Backwards compatibility
* Little development effort
* Quick adoption

* It works! But...
* Performance not as expected
* Unpredictable user experience

* Notable examples from recent past
« HDD - RAID - SSD = NAS/cloud storage

Filesystem ‘ ! |

Block interface - ______

Block storage

device



This talk

* How the storage-systems community addresses NVM
A Non-exhaustive, non-prioritized list of examples*
A Grossly over-simplified
* Focus on insights and the adaptation process

e System model and characterization
 Unexpected bottlenecks
* Performance isolation / QoS

* Figures taken from respective cited papers and author presentations



What is NVM, exactly?

Non-volatile memory typically refers to storage in semiconductor memory chips, which store data in
floating-gate memory cells consisting of floating-gate MOSFETs (metal-oxide—semiconductor field-effect

transistors), including|flash memory storage lsuch as NAND flash and@lid-state drives (SSD@

“#) WikipEDIA
Other examples of non-volatile memory include read-only memory (ROM), EFROM (erasable S Thefreeneydopedi
programmable ROM) and EEFPROM (electrically erasable programmable ROM), ferroelectric RAM, most

types of computer data storage devices {E.g.@isk storage, hard disk drives, optical discs, floppy dis@ and

magnetic tape), and early computer storage methods such aa[@nr:hed tape and cards [
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* For many purposes, fast and non-volatile is NVM

* Write-ahead logging
* Metadata or index
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* For many purposes, fast and non-volatile is NVM

* Write-ahead logging
* Metadata or index

* For our purpose, byte-addresable and non-DRAM
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What is NVM, exactly?

* Intel Optane
persistent memory

[l
 For our purpose, byte-addresable and non-DRAM IS ITA<PLANE ?
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What is NVM, exactly?

* Intel Optane e Samsung’s CMM-H
persistent memory (CXL Memory Module — Hybrid)
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* For our purpose, byte-addresable and non-DRAM ISITA PLANE ?
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https://semiconductor.samsung.com/us/news-events/tech-blog/rethinking-storage-for-the-memory-centric-computing-era/

Characterization (Optane)

e Faster than HDD and SSD but slower than DRAM
* Does not behave like DRAM &) 0.
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J. Izraelevitz et al. Basic Performance Measurements of the Intel Optane DC Persistent Memory Module, arXiv:1903.05714v3 2019
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Characterization (Optane)

e Faster than HDD and SSD but slower than DRAM

* Does not behave like DRAM Local DRAM
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Rethinking file-system indexing

* Bottleneck: tree-based inode index incurs high overhead with NVM
* Up to 63% of the time spend on FS operations (e.g., file append)
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R. Li et al. ctFS: Replacing File Indexing with Hardware Memory Translation through Contiguous File Allocation for
Persistent Memory, USENIX FAST 2022 16



https://www.usenix.org/conference/fast22/presentation/li

Rethinking file-system indexing

* Bottleneck: tree-based inode index incurs high overhead with NVM
* Up to 63% of the time spend on FS operations (e.g., file append)

* Insights:
* Use hardware-based translation
* Don’t care about physical contiguity
* Persist small updates quickly

|
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R. Li et al. ctFS: Replacing File Indexing with Hardware Memory Translation through Contiguous File Allocation for

Persistent Memory, USENIX FAST 2022
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Rethinking file-system indexing: ctFS

e Use hardware-based translation

* Don’t care about physical contiguity

________________
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R. Li et al. ctFS: Replacing File Indexing with Hardware Memory Translation through Contiguous File Allocation for
Persistent Memory, USENIX FAST 2022
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Rethinking file-system indexing: ctFS

* Use hardware-based translation * Persist small updates quickly
e Don’t care about physical contiguity
_________ New syscall:
virtu.;éll address ~‘, atomic pswap ()
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R. Li et al. ctFS: Replacing File Indexing with Hardware Memory Translation through Contiguous File Allocation for
Persistent Memory, USENIX FAST 2022 19
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Rethinking kernel-space vs. user-space

* Bottleneck: metadata handling in kernel space is inefficient

4 KB Append + Fsync

Throughput (GB/s)

S. Zhong et al. MadFS: Per-File Virtualization for Userspace Persistent Memory Filesystems USENIX FAST 2023
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Rethinking kernel-space vs. user-space

* Bottleneck: metadata handling in kernel space is inefficient

* Insights:
* Some metadata can be safely handled in user space

* Rethink data/metadata separation
4 KB Append + Fsync

Throughput (GB/s)

S. Zhong et al. MadFS: Per-File Virtualization for Userspace Persistent Memory Filesystems USENIX FAST 2023
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Rethinking kernel-space vs. user-space: MadFS

 Some metadata can be safely handled in user space

* Rethink data/metadata separation

VI V2 V3
AlBIC Virtual
* Embedded metadata 0 e o e — o
* “Virtual” file block map and size M B C A | ?
Ll L2 L5

Block Map: {VI:L4,V2:L2,V3:L3}
Bitmap: 111100---
Virtual File Size: |2 KB

S. Zhong et al. MadFS: Per-File Virtualization for Userspace Persistent Memory Filesystems USENIX FAST 2023 22
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Rethinking kernel-space vs. user-space: MadFS

 Some metadata can be safely handled in user space

* Rethink data/metadata separation

VI V2 V3
AlB|C Virtual
* Embedded metadata =0 e o e — o
* “Virtual” file block map and size M|B|C|A|?
Ll L2 L5
e Kernel-managed metadata
* Logical-to-physical mapping Block Map: {V1:L4,V2:L2,V3:L3}
* File permissions Bitmap: 111100--
* Directory structures Virtual File Size: 12 KB

S. Zhong et al. MadFS: Per-File Virtualization for Userspace Persistent Memory Filesystems USENIX FAST 2023 23
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Rethinking shared caches ) D )

=3 P Pl —
* More space allocation = higher hit rate = better performance _
* Higher bandwidth = more usage = more interference

e Tenant A is too slow = throttle noisy neighbor B with max bandwidth

* DRAM: |

K. Wu at al. NyxCache: Flexible and Efficient Multi-tenant Persistent Memory Caching USENIX FAST 2022 24
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* DRAM:
* More space allocation = higher hit rate = better performance
* Higher bandwidth = more usage = more interference
e Tenant A is too slow = throttle noisy neighbor B with max bandwidth
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Rethinking shared caches: NyxCache

* Profile max performance of different access types

Max IOPS for random reads /writes
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K. Wu at al. NyxCache: Flexible and Efficient Multi-tenant Persistent Memory Caching USENIX FAST 2022
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Rethinking shared caches: NyxCache

* Profile max performance of different access types
* Monitor individual tenants and their interaction

Current State
A Performance: L Max IOPS for random reads /writes

6
Throttle B: . . Throttle C: |
- A unchanged... - A improves! T 4. _ : :
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K. Wu at al. NyxCache: Flexible and Efficient Multi-tenant Persistent Memory Caching USENIX FAST 2022 27
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Rethinking shared caches: NyxCache

* Profile max performance of different access types
* Monitor individual tenants and their interaction
e Library throttles tenant using most resources / causing most interference

Current State
A Performance: L Max IOPS for random reads /writes
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K. Wu at al. NyxCache: Flexible and Efficient Multi-tenant Persistent Memory Caching USENIX FAST 2022 28
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Conclusions

Fine-grained Boundaries shifted,
performance modeling hardware support added
Legacy New
system —4 ‘ —4 + ~ legacy
system
New media Bottlenecks addressed
available by bypassing boundaries

and hacking interfaces
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Conclusions

Fine-grained Boundaries shifted,
performance modeling hardware support added
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system
New media Bottlenecks addressed
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