- - E
o ol

o moved my cheese?

1s deal with changes in their media

N Gala Yadgar
N\ - .
\ \ ; MTECHNlON | (S) The Henry and Marilyn Taub

Faculty of Computer Science

“Why is Hebrew written backwards?”

>

The quick brown fox
jumps overthelazy dog.

“Why is Hebrew written backwards?”

> <

The quick brown fox Lol A sd gy e 4 4@, qors 32

7\Kf\11\ll“ll\h|\lt|’ NIMANNNMAT
K;\S,\SY!NW!SF;\/\&I\V?\N)\SINU\}\)
ISVIAVAN, NH»MM\MPIHKP,\N?\
.SYlN(P,\Nl;\lS!N\I\.P u\upm\m

AY- TARMISHISYIAYAL: AME)
FZYISYNTEINNANTA AR ,\e T ,\\\\m,\) RN
YADRDTESNNNMMANNEC N
Tbl NRSSYAMANATRS SYASYEYR

Cuneiform tablet
(~2000 BC)
Codex Argenteus
(~500 AC)

“Why is Hebrew written backwards?”

> <

The QUlCK brown ‘PO)(O - GO £ P e 4 u&)) gy 3
jumps overthelazy dog. _ |

NKAHXNABAIY NIMANNAMAT
KASAS YINWISTN ACIPANISTNTAR
ISVIAVAN, N\bMM\Kq)lqu,\Ni\
= SYIN(p,\Nl,\blN\qu t;\upi\m\
A FARSISHMSYIAVAL: AMENUIDA
uY!x\pM‘H,\;\i\,\lM}‘Abl,\\»\\]lf\n\];\,\ W’?’;fu”"’ e

n | ~I
Y&,,E&T vy Cuneiform tablet o 4\
. ' (~2000 BC)

Codex Argenteus
(~500 AC)

It’s the storage medial

Storage systems and their media

e Abstraction layers hide complexity and details

POSIX interface

Filesystem

[]
Block interface - - ______ D _______

]
[
Block storage
device .
- 5

Storage systems and their media

* Abstraction layers hide complexity and details

* Add the new media as a direct replacement
e Backwards compatibility
* Little development effort POSIX interface
* Quick adoption

Filesystem
Block interface - _--_-_______ % _______
Block storage @
device o L i

Storage systems and their media

* Abstraction layers hide complexity and details
* Add the new media as a direct replacement

e Backwards compatibility
* Little development effort
* Quick adoption

* It works! But...
* Performance not as expected
* Unpredictable user experience

* Notable examples from recent past
« HDD - RAID - SSD = NAS/cloud storage

Filesystem ‘ ! |

Block interface - ______

Block storage

device

This talk

* How the storage-systems community addresses NVM
A Non-exhaustive, non-prioritized list of examples*
A Grossly over-simplified
* Focus on insights and the adaptation process

e System model and characterization
 Unexpected bottlenecks
* Performance isolation / QoS

* Figures taken from respective cited papers and author presentations

What is NVM, exactly?

Non-volatile memory typically refers to storage in semiconductor memory chips, which store data in
floating-gate memory cells consisting of floating-gate MOSFETs (metal-oxide—semiconductor field-effect

transistors), including|flash memory storage lsuch as NAND flash and@lid-state drives (SSD@

“#) WikipEDIA
Other examples of non-volatile memory include read-only memory (ROM), EFROM (erasable S Thefreeneydopedi
programmable ROM) and EEFPROM (electrically erasable programmable ROM), ferroelectric RAM, most

types of computer data storage devices {E.g.@isk storage, hard disk drives, optical discs, floppy dis@ and

magnetic tape), and early computer storage methods such aa[@nr:hed tape and cards [

IS IT A<PLANE ?

What is NVM, exactly?

Non-volatile memory typically refers to storage in semiconductor memory chips, which store data in
floating-gate memory cells consisting of floating-gate MOSFETs (metal-oxide—semiconductor field-effect

transistors), including|flash memory storage Isuch as NAND flash and@lid-state drives (SSDﬂ -
4 WIKIPEDIA

g : The Free Encyclopedia

Other examples of non-volatile memory include read-only memory (ROM), EFROM (erasable
programmable ROM) and EEFPROM (electrically erasable programmable ROM), ferroelectric RAM, most
types of computer data storage devices {E.g.@isk storage, hard disk drives, optical discs, floppy dis@ and

magnetic tape), and early computer storage methods such aa{@nched tape and cards [

* For many purposes, fast and non-volatile is NVM

* Write-ahead logging
* Metadata or index

10

What is NVM, exactly?

Non-volatile memory typically refers to storage in semiconductor memory chips, which store data in
floating-gate memory cells consisting of floating-gate MOSFETs (metal-oxide—semiconductor field-effect
transistors), including|flash memory storage Isuch as NAND flash and@lid-state drives (SSDﬂ

% WIKIPEDIA

g : The Free Encyclopedia

Other examples of non-volatile memory include read-only memory (ROM), EFROM (erasable
programmable ROM) and EEFPROM (electrically erasable programmable ROM), ferroelectric RAM, most

types of computer data storage devices {E.g.@isk storage, hard disk drives, optical discs, floppy dis@ and
1]

magnetic tape), and early computer storage methods such aa{@nched tape and cards |

* For many purposes, fast and non-volatile is NVM

* Write-ahead logging
* Metadata or index

* For our purpose, byte-addresable and non-DRAM

11

What is NVM, exactly?

* Intel Optane
persistent memory

[l
 For our purpose, byte-addresable and non-DRAM IS ITA<PLANE ?

12

What is NVM, exactly?

* Intel Optane e Samsung’s CMM-H
persistent memory (CXL Memory Module — Hybrid)

7 —
Iy &

i
* For our purpose, byte-addresable and non-DRAM ISITA PLANE ?

13

https://semiconductor.samsung.com/us/news-events/tech-blog/rethinking-storage-for-the-memory-centric-computing-era/

Characterization (Optane)

e Faster than HDD and SSD but slower than DRAM
* Does not behave like DRAM &) 0.

 Random # Sequential

200 A

100 ~

o
|

@ Idle Latency (ns) .

Sequential Random
(- local —— Remote = Optane
DRAM DRAM

J. Izraelevitz et al. Basic Performance Measurements of the Intel Optane DC Persistent Memory Module, arXiv:1903.05714v3 2019

https://arxiv.org/abs/1903.05714

Characterization (Optane)

e Faster than HDD and SSD but slower than DRAM

* Does not behave like DRAM Local DRAM
 Random # Sequential @100_

Reads # Writes

Small # Large

Much lower bandwidth

(Much more interference)

AAAAAAAAA“AAAA
A

75_F¢*+¥+¥4¥¥4#4#44

50 -

25 q 0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0

: S O 1 1 1 1 1 1
64B 512B 4KB 32KB256KB2MB

Access Size (byte)

[]
Bandwidth (GB/s

‘ »-= Read -y \\Trite(clwb) —o== \\/rite(ntstore)

Optane

AAAAAAAAAAAAAA

A

64B 512B 4KB 32KB256KB 2MB
Access Size (byte)

J. Izraelevitz et al. Basic Performance Measurements of the Intel Optane DC Persistent Memory Module, arXiv:1903.05714v3 2019

https://arxiv.org/abs/1903.05714

Rethinking file-system indexing

* Bottleneck: tree-based inode index incurs high overhead with NVM
* Up to 63% of the time spend on FS operations (e.g., file append)

k= PM
leaf nodes Logicalblock physical pages

! »

| 1 >
1 extd_inode :

i Index nodes ! >
i_block .
node header o :
)

extent index — [-

d L L4
1

extent index N : .

» »
Ll 1
xt d node head I

! Yy

| Ll
xten! 1

! »

! >
]
1

———————— T Y

extent index | Ll

[»

M »

[>

Software Hardware:
MMU

R. Li et al. ctFS: Replacing File Indexing with Hardware Memory Translation through Contiguous File Allocation for
Persistent Memory, USENIX FAST 2022 16

https://www.usenix.org/conference/fast22/presentation/li

Rethinking file-system indexing

* Bottleneck: tree-based inode index incurs high overhead with NVM
* Up to 63% of the time spend on FS operations (e.g., file append)

* Insights:
* Use hardware-based translation
* Don’t care about physical contiguity
* Persist small updates quickly

|
1 ext4_inode

i_block

Index nodes

node header

extent index

1

Y

Hardware:
MMU

Software

R. Li et al. ctFS: Replacing File Indexing with Hardware Memory Translation through Contiguous File Allocation for

Persistent Memory, USENIX FAST 2022

17

https://www.usenix.org/conference/fast22/presentation/li

Rethinking file-system indexing: ctFS

e Use hardware-based translation

* Don’t care about physical contiguity

tFS_inod E
.| i_block :
inode only N !
—k :
records start) N
of segment 5 /)
Offset : !
Kernel module :
populates DRAM) ,
page table = ————— Hadwae

MMU

R. Li et al. ctFS: Replacing File Indexing with Hardware Memory Translation through Contiguous File Allocation for
Persistent Memory, USENIX FAST 2022

https://www.usenix.org/conference/fast22/presentation/li

Rethinking file-system indexing: ctFS

* Use hardware-based translation * Persist small updates quickly
e Don’t care about physical contiguity
_________ New syscall:
virtu.;éll address ~‘, atomic pswap ()
ctFS_inode Before pswap(A, B) After pswap(A, B) —

. i_block E E PUD PMD PTE page PUD PMD PTE page
inode only = A

o .]
— — : =
records start Al . R.ﬁ%:%
of segment 5 / LES / “BE==
| omset | Hierarchical =

partitions

: B ! N B
Kernel module : = -

populates DRAM] y -
* “Hardware: -
page table Hardwa -—

R. Li et al. ctFS: Replacing File Indexing with Hardware Memory Translation through Contiguous File Allocation for
Persistent Memory, USENIX FAST 2022 19

https://www.usenix.org/conference/fast22/presentation/li

Rethinking kernel-space vs. user-space

* Bottleneck: metadata handling in kernel space is inefficient

4 KB Append + Fsync

Throughput (GB/s)

S. Zhong et al. MadFS: Per-File Virtualization for Userspace Persistent Memory Filesystems USENIX FAST 2023

20

https://www.usenix.org/conference/fast23/presentation/zhong

Rethinking kernel-space vs. user-space

* Bottleneck: metadata handling in kernel space is inefficient

* Insights:
* Some metadata can be safely handled in user space

* Rethink data/metadata separation
4 KB Append + Fsync

Throughput (GB/s)

S. Zhong et al. MadFS: Per-File Virtualization for Userspace Persistent Memory Filesystems USENIX FAST 2023

21

https://www.usenix.org/conference/fast23/presentation/zhong

Rethinking kernel-space vs. user-space: MadFS

 Some metadata can be safely handled in user space

* Rethink data/metadata separation

VI V2 V3
AlBIC Virtual
* Embedded metadata 0 e o e — o
* “Virtual” file block map and size M B C A | ?
Ll L2 L5

Block Map: {VI:L4,V2:L2,V3:L3}
Bitmap: 111100---
Virtual File Size: |2 KB

S. Zhong et al. MadFS: Per-File Virtualization for Userspace Persistent Memory Filesystems USENIX FAST 2023 22

https://www.usenix.org/conference/fast23/presentation/zhong

Rethinking kernel-space vs. user-space: MadFS

 Some metadata can be safely handled in user space

* Rethink data/metadata separation

VI V2 V3
AlB|C Virtual
* Embedded metadata =0 e o e — o
* “Virtual” file block map and size M|B|C|A|?
Ll L2 L5
e Kernel-managed metadata
* Logical-to-physical mapping Block Map: {V1:L4,V2:L2,V3:L3}
* File permissions Bitmap: 111100--
* Directory structures Virtual File Size: 12 KB

S. Zhong et al. MadFS: Per-File Virtualization for Userspace Persistent Memory Filesystems USENIX FAST 2023 23

https://www.usenix.org/conference/fast23/presentation/zhong

Rethinking shared caches) D)

=3 P Pl —
* More space allocation = higher hit rate = better performance _
* Higher bandwidth = more usage = more interference

e Tenant A is too slow = throttle noisy neighbor B with max bandwidth

* DRAM: |

K. Wu at al. NyxCache: Flexible and Efficient Multi-tenant Persistent Memory Caching USENIX FAST 2022 24

https://www.usenix.org/conference/fast22/presentation/wu

Rethinking shared caches ;.E

o
s

* DRAM:
* More space allocation = higher hit rate = better performance
* Higher bandwidth = more usage = more interference
e Tenant A is too slow = throttle noisy neighbor B with max bandwidth

* NVM: @ 0 v 1.5
L'j 1.5 - 5
et 4
a 2 1.0
oVl > o Small requests
Writes interfere /g/ o \ - §
o £ 0.5 1 —— interfere more
more than reads 05 =
= ==/ read-interference £ than |arge ones
'E 0.0 v/ Write-interference § 0.0
" " T T T 'b(Q)
r 0 5 10 "'o q’,-lf) 4)"1/ 4)% b‘b‘%{o'\.’l’
Interference Throughput (GB/s) Interference Write Sizes (Bytes)

K. Wu at al. NyxCache: Flexible and Efficient Multi-tenant Persistent Memory Caching USENIX FAST 2022 25

https://www.usenix.org/conference/fast22/presentation/wu

Rethinking shared caches: NyxCache

* Profile max performance of different access types

Max IOPS for random reads /writes

_E m— Read ,e-*/?’
= m Write
= 4+ f.f-f";f 1
= ~ : .
u - =
o - H H
o 27 0 T 1 —
» W\i\ 0 4 812
L L i
U B T T _--: T T T T
0 10 20 30 40 50 60
Access Size (64B)
26

K. Wu at al. NyxCache: Flexible and Efficient Multi-tenant Persistent Memory Caching USENIX FAST 2022

https://www.usenix.org/conference/fast22/presentation/wu

Rethinking shared caches: NyxCache

* Profile max performance of different access types
* Monitor individual tenants and their interaction

Current State
A Performance: L Max IOPS for random reads /writes

6
Throttle B: . . Throttle C: |
- A unchanged... - A improves! T 4. _ : :
e " ¢ A S .Q e
. ____:EL_______érf-"f'E;__
. ° _[I] llﬂ __ETD 3|D 4IEI EID EID

Access Size (64B)

Max IQOPS(10 Million)

K. Wu at al. NyxCache: Flexible and Efficient Multi-tenant Persistent Memory Caching USENIX FAST 2022 27

https://www.usenix.org/conference/fast22/presentation/wu

Rethinking shared caches: NyxCache

* Profile max performance of different access types
* Monitor individual tenants and their interaction
e Library throttles tenant using most resources / causing most interference

Current State
A Performance: L Max IOPS for random reads /writes
6
Throttle B: . . Throttle C: m— Read 2z

. Wit~

B
1

- 14

o]
1

- A unchanged... - A improves!
0

Q" 9o e e

l I 0 10 20 30 40 50 60

Access Size (64B)

Max IQOPS(10 Million)

(=]

K. Wu at al. NyxCache: Flexible and Efficient Multi-tenant Persistent Memory Caching USENIX FAST 2022 28

https://www.usenix.org/conference/fast22/presentation/wu

Conclusions

Fine-grained Boundaries shifted,
performance modeling hardware support added
Legacy New
system —4 ‘ —4 + ~ legacy
system
New media Bottlenecks addressed
available by bypassing boundaries

and hacking interfaces

29

Conclusions

Fine-grained Boundaries shifted,
performance modeling hardware support added
Legacy New
system ¢ ‘+ 4 —4 " legacy
system
New media Bottlenecks addressed
available by bypassing boundaries

and hacking interfaces

30

Conclusions

Fine-grained Boundaries shifted,
performance modeling hardware support added
Legacy New
system ¢ ‘+ ‘ +4 ~ legacy
system
New media Bottlenecks addressed
available by bypassing boundaries

and hacking interfaces

 And what about our written language...”?

31

Conclusions

Fine-grained Boundaries shifted,
performance modeling hardware support added
Legacy New
system ¢ ‘+ 4 —4 " legacy
system
New media Bottlenecks addressed
available by bypassing boundaries

and hacking interfaces

 And what about our written language...”? %4 ©!
?

32

