
Transactional Memory for Processing-In-Memory: 
A Software-based Implementation 

for the UPMEM platform

EMERALD 2024

Paolo Romano



Joint work with

2

André Lopes
PhD Student 

Daniel Castro
Postdoc 



Data movement bottleneck

3

Processing In



UPMEM PIM Hardware

4

• Commercially available PIM system

• Each DPU has 24 hardware threads

• 2560 DPU è > 60K threads in total!
Data Processing Unit (DPU) 

• No direct communication between DPUs



UPMEM PIM Hardware

5

• Commercially available PIM system

• Each DPU has 24 hardware threads

• 2560 DPU è > 60K threads in total!
Data Processing Unit (DPU) 

• No direct communication between DPUs

PIM applications 
need to be parallel!

Problem: synchronize access to shared memory



Transactional Memory

• Simpler alternative to lock-based synchronization

6

• Pros:
• Simplicity: reduction software development cost
• Efficiency: speculative concurrency control schemes

• Programmers only need to identify atomic blocks



PIM-STM [ASPLOS’24]

7

• First Software TM (STM) for PIM devices

• Set of STM implementations for the UPMEM PIM system:
• Exhaustive study of the design space of STM algorithms

• Simplify the development of parallel applications for emerging PIM devices

• PIM-STM library exposes a conventional STM API…
...but with some restrictions dictated by performance considerations



Investigated STM Designs

8

• Metadata Granularity
• Granularity at which conflicts are detected

• Read Visibility
• Visibility of reads by concurrent transactions

• Lock Timing
• When locks are acquired

• Write policy
• When writes are applied



Key Challenges

9

• Optimize STM implementations for UPMEM hardware features

1. No direct communication between DPUs

2. Communication and computations can’t be overlapped

3. Usage of WRAM vs MRAM for STM metadata

4. Atomic operations with restricted semantics



PIM-STM: Key design choice

10

• No support for distributed transactions

• Key design choice to promote high 
locality è high performance

• Transaction abstraction as an 
intra-DPU synchronization primitive



PIM-STM: Key Challenges & Contributions

11

• Optimize STM implementations for UPMEM hardware features

1. No direct communication between DPUs

2. Communication and computations can’t be overlapped

3. Usage of WRAM vs MRAM for STM metadata

4. Atomic operations with restricted semantics



Hardware-specific features:
WRAM vs MRAM for STM metadata

• WRAM: 64KB fast scratchpad memory
• MRAM: 64MB slower DRAM

• Trade-offs associated with using WRAM for STM metadata: 
- Scarce resource that applications may use for other purposes

è Not necessarily available for the STM library 
+ STM instrumentation overhead can be significantly mitigated:

è Up to 5.1x speed-ups in TM-intensive applications!

12

Where to store STM metadata ?
(e.g., read-/write-sets?)



PIM-STM: Key Challenges & Contributions

13

• Optimize STM implementations for UPMEM hardware features

1. No direct communication between DPUs

2. Communication and computations can’t be overlapped

3. Usage of WRAM vs MRAM for STM metadata

4. Atomic operations with restricted semantics



Hardware-specific features:
Atomic instructions with restricted semantics

• Orec-based STM designs rely on lock-tables

• In CPU-based STMs, lock table entries are manipulated atomically via CAS

• But CAS is not available in UPMEM!

• Only available atomic instructions:
• acquire/release <addr>
• <addr> mapped to a bit of a 256 bits-wide hw register è aliasing

14



Hardware-specific features:
Atomic instructions with restricted semantics

• Why not using aquire/release <addr> to implement STM locks directly?

• Problem:
• Aliasing can cause spurious contention on STM locks
• Lock contention è transaction abort to avoid deadlocks

• Solution: lock-table’s entries guarded via a “latch”
• Latches held only while manipulating/querying a lock table entry
• Negative impact of aliasing is strongly reduced:

• Upon contention: wait instead of abort (no deadlocks!)
• Latch duration << STM locks duration (whole transaction) è wait time is small

15



Evaluation

16

1. Which STM designs work best 
for workloads that use a single DPU 

2. Efficiency with multi DPUs vs 
CPU based implementation

Key research questions:



Evaluation: Single-DPU Study

Benchmarks
• Concurrent data structures

• ArrayBench
• Linked-List

• Porting of STAMP
• KMeans (AI/ML)
• Labyrinth (Circuit Routing)

17

1. Which STM designs work best 
for workloads that use a single DPU 

Key research questions:



Evaluation: Single-DPU Study

• Metadata Granularity
• NOrec tends to perform better due to handling less metadata

• Read Visibility
• Visible reads tens to perform worse due to spurious aborst

• Lock Timing
• Commit time locking tends to perform worse due to wasted work

• Write Policy
• Limited impact on performance

18

• No one-size-fits-all solution



Evaluation: Single-DPU Study

• Metadata Granularity
• NOrec tends to perform better due to handling less metadata

• Read Visibility
• Visible reads tens to perform worse due to spurious aborst

• Lock Timing
• Commit time locking tends to perform worse due to wasted work

• Write Policy
• Limited impact on performance

19

• No one-size-fits-all solution

Details in 
our 

ASPLOS’24 
paper



Evaluation: Single-DPU Study

20

N
or

m
al

iz
ed

 S
TM

 
pe

rfo
rm

an
ce

• No one-size-fits-all solution

NoREC is on average the best 
performing appoach

Yet, NOREC can be the worst
performing solution in some scenarios!

NoREC

Visible read
designs



Evaluation

21

2. Efficiency with multi DPUs vs 
CPU based implementation

Key research questions:

Benchmarks
• Labyrinth

• Independent instances on DPUs

• KMeans
• Adapted to distribute data across DPUs
• Results produced by each DPU are 

merged by the CPU



Evaluation: Multi-DPU Study

22

• PIM achieves performance gains wrt
CPU in all scenarios:
èUp to 14.53x

• PIM achieves energy gains in all but 1 
scenarios
è Up to 5x

+ excellent performance potential 
- room for improving energy efficiency

PI
M

-S
TM

 g
ai

ns
 o

ve
r C

PU



Conclusions

• First implementation of STM for PIM devices

• Restricted semantics: no distributed transactions 
• Key trade-off: sacrifice generality in favour of efficiency

• Exhaustive study of the design space of STM algorithms

• Comparison with CPU-based implementation
• Remarkable speed-ups (up to 14x)
• Less satisfactory regarding energy efficiency (up to 31.5% higher energy 

consumption)

23



Future work

• Algorithmic extensions
• Investigate efficient ways to support distributed transactions:

• Revisit trade-off between generality and efficiency

• Target new application domains
• Deterministic parallelization of Blockchains
• In-memory storage for AI inference pipelines

24



Thank you!

25


