
LOCO: Objects for Memory-Semantic Networks 
(WiP)

George Hodgkins, Joseph Izraelevitz

University of Colorado, Boulder

EMERALD 2024



Agenda

2

1. Motivation - RDMA is fast, but hard to program

2. Related work - Existing abstractions are either too complex 

(hard to use) or overly simple (limited performance)

3. Our contribution - Objects are the solution



RDMA Overview

3

NIC

Memory

CPU

NIC

Memory

CPU

A new(ish), fast, network protocol, off-loaded to the network card…



RDMA Overview

4

NIC

Memory

CPU

NIC

Memory

CPU

RDMA Request



RDMA Overview

5

NIC

Memory

CPU

NIC

Memory

CPU

Remote Read/Write

RDMA Request



RDMA Overview

6

NIC

Memory

CPU

NIC

Memory

CPU

Remote Read/Write

Direct Memory 

Access

RDMA Request



Normal 

memory 

access

RDMA Overview

7

NIC

Memory

CPU

NIC

Memory

CPU

A new(ish), fast, network protocol, off-loaded to the network card…

?



How is RDMA Used?

8

Directly through native verbs API:

• Complex interface

• Must reason carefully about consistency

• Often used to (re-)implement a specific existing application

• Ad-hoc usage limits setup flexibility, failure handling



How is RDMA Used?

9

Through MPI:

• Used on the backend to accelerate existing interface

• Can also directly allocate memory regions for read/write access

• ..but scalability is limited due to coarse-grained, non-

customizable locking at the library level

• Other synchronization primitives (barriers) are library primitives 

as well



How is RDMA Used?

10

As a single coherent address space:

• Enforcing coherence & consistency limits performance

• Naively porting shared memory applications gives poor 

performance due to extremely non-uniform latency



Why Objects?

12

Objects are:

• Encapsulated – They hide complexity from the user in a 

controllable way

• Composable and reusable – Functionality can be reused and 

combined for new use cases

• Intuitive – An object model is a good fit for many applications



Existing object models

13

BCL: Berkeley Container Library (ICPP ’19)

• Containers built on a flat global address space

• Implemented on top of MPI or similar using a client-server model

• Containers are unique, neither reusable nor composable

HCL: Hermes Container Library (CLUSTER ‘20)

• Improved version of BCL

• Containers are now named and reusable, but still not composable

• Retains MPI backend & client-server model



LOCO Overview

14

• Object system built directly on verbs API

• Memory is accessed through typed primitives

• Objects are composable and reusable, referred to by name

• Symmetric peer model which supports dynamic join & drop (at 

both object and node level)

• Different object implementations can connect to each other to 

support asymmetric behavior



Barrier example: class members

16An SST with three participants. Arrows point from writers to readers.



Barrier example: owned_var

17

Each register in the SST is an owned_var, which provides 

single-writer atomicity using different strategies depending on 

the size of the underlying type:

• ≤ 8 bytes: atomicity is guaranteed by the NIC-CPU interface

• ≤ 56 bytes: sequence numbers written before and after each 

data write; reader retries if they do not match 

• > 56 bytes: attach checksum to writes, reader retries if they 

do not match



Barrier example

18

Channel name

Number of 

participants

SST constructor

join() call



Barrier example

19

1. Increment 

counter

2. Broadcast 

new value

3. Wait for 

others



Barrier example

20



Ack keys

21

• An ack key is a pollable object representing used for monitoring 

the progress of one or more RDMA operations

• Each RDMA operation in LOCO corresponds to a 64-bit unsigned 

integer work request ID (WRID)

• A WRID can optionally be “attached” to an ack key to monitor 

progress of the corresponding operations

• The ack key is a bitset supporting lock-free insertion and removal

• The WRID is inserted in the bitset when attached, if not yet 

complete, and removed from the bitset when 



Completion infrastructure

22



Distributed power converter

V_in: individual input voltage

V_out: aggregate output voltage

d_N: Duty cycle for converter N

V_N: Output voltage at converter N
23



Power converter evaluation

24



Distributed key-value store

25



Key-value store evaluation

26

Up = faster



Key-value store evaluation

27

Up = faster



Summary

28

● RDMA is hard to program

● Existing abstractions limit performance or are difficult to use

● Objects present an attractive interface for hiding complexity 

while maintaining performance

● LOCO objects perform similarly to ad-hoc implementations



Extra

29


	Slide 1: LOCO: Objects for Memory-Semantic Networks (WiP)
	Slide 2: Agenda
	Slide 3: RDMA Overview
	Slide 4: RDMA Overview
	Slide 5: RDMA Overview
	Slide 6: RDMA Overview
	Slide 7: RDMA Overview
	Slide 8: How is RDMA Used?
	Slide 9: How is RDMA Used?
	Slide 10: How is RDMA Used?
	Slide 12: Why Objects?
	Slide 13: Existing object models
	Slide 14: LOCO Overview
	Slide 16: Barrier example: class members
	Slide 17: Barrier example: owned_var
	Slide 18: Barrier example
	Slide 19: Barrier example
	Slide 20: Barrier example
	Slide 21: Ack keys
	Slide 22: Completion infrastructure
	Slide 23: Distributed power converter
	Slide 24: Power converter evaluation
	Slide 25: Distributed key-value store
	Slide 26: Key-value store evaluation
	Slide 27: Key-value store evaluation
	Slide 28: Summary
	Slide 29: Extra

