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1. Motivation - RDMA is fast, but hard to program

2. Related work - Existing abstractions are either too complex 

(hard to use) or overly simple (limited performance)

3. Our contribution - Objects are the solution
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A new(ish), fast, network protocol, off-loaded to the network card…
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How is RDMA Used?
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Directly through native verbs API:

• Complex interface

• Must reason carefully about consistency

• Often used to (re-)implement a specific existing application

• Ad-hoc usage limits setup flexibility, failure handling



How is RDMA Used?
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Through MPI:

• Used on the backend to accelerate existing interface

• Can also directly allocate memory regions for read/write access

• ..but scalability is limited due to coarse-grained, non-

customizable locking at the library level

• Other synchronization primitives (barriers) are library primitives 

as well



How is RDMA Used?
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As a single coherent address space:

• Enforcing coherence & consistency limits performance

• Naively porting shared memory applications gives poor 

performance due to extremely non-uniform latency



Why Objects?
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Objects are:

• Encapsulated – They hide complexity from the user in a 

controllable way

• Composable and reusable – Functionality can be reused and 

combined for new use cases

• Intuitive – An object model is a good fit for many applications



Existing object models

13

BCL: Berkeley Container Library (ICPP ’19)

• Containers built on a flat global address space

• Implemented on top of MPI or similar using a client-server model

• Containers are unique, neither reusable nor composable

HCL: Hermes Container Library (CLUSTER ‘20)

• Improved version of BCL

• Containers are now named and reusable, but still not composable

• Retains MPI backend & client-server model



LOCO Overview
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• Object system built directly on verbs API

• Memory is accessed through typed primitives

• Objects are composable and reusable, referred to by name

• Symmetric peer model which supports dynamic join & drop (at 

both object and node level)

• Different object implementations can connect to each other to 

support asymmetric behavior



Barrier example: class members

16An SST with three participants. Arrows point from writers to readers.



Barrier example: owned_var
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Each register in the SST is an owned_var, which provides 

single-writer atomicity using different strategies depending on 

the size of the underlying type:

• ≤ 8 bytes: atomicity is guaranteed by the NIC-CPU interface

• ≤ 56 bytes: sequence numbers written before and after each 

data write; reader retries if they do not match 

• > 56 bytes: attach checksum to writes, reader retries if they 

do not match



Barrier example
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Barrier example
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Ack keys
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• An ack key is a pollable object representing used for monitoring 

the progress of one or more RDMA operations

• Each RDMA operation in LOCO corresponds to a 64-bit unsigned 

integer work request ID (WRID)

• A WRID can optionally be “attached” to an ack key to monitor 

progress of the corresponding operations

• The ack key is a bitset supporting lock-free insertion and removal

• The WRID is inserted in the bitset when attached, if not yet 

complete, and removed from the bitset when 



Completion infrastructure
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Distributed power converter

V_in: individual input voltage

V_out: aggregate output voltage

d_N: Duty cycle for converter N

V_N: Output voltage at converter N
23



Power converter evaluation
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Distributed key-value store
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Key-value store evaluation
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Up = faster



Key-value store evaluation
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Up = faster



Summary
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● RDMA is hard to program

● Existing abstractions limit performance or are difficult to use

● Objects present an attractive interface for hiding complexity 

while maintaining performance

● LOCO objects perform similarly to ad-hoc implementations



Extra
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